
NI-DCPower Python API Documentation
Release 1.4.8

NI

Apr 26, 2024

DOCUMENTATION

1 About 1
1.1 Support Policy . 1

2 Contributing 3

3 Support / Feedback 5

4 Bugs / Feature Requests 7
4.1 nidcpower module . 7

4.1.1 Installation . 7
4.1.2 Usage . 7
4.1.3 API Reference . 8

4.2 Additional Documentation . 234

5 License 235

6 Indices and tables 237

Python Module Index 239

Index 241

i

ii

CHAPTER

ONE

ABOUT

The nidcpower module provides a Python API for NI-DCPower. The code is maintained in the Open Source repository
for nimi-python.

1.1 Support Policy

nidcpower supports all the Operating Systems supported by NI-DCPower.

It follows Python Software Foundation support policy for different versions of CPython.

1

https://github.com/ni/nimi-python
https://devguide.python.org/#status-of-python-branches

NI-DCPower Python API Documentation, Release 1.4.8

2 Chapter 1. About

CHAPTER

TWO

CONTRIBUTING

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions.

3

https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md

NI-DCPower Python API Documentation, Release 1.4.8

4 Chapter 2. Contributing

CHAPTER

THREE

SUPPORT / FEEDBACK

For support specific to the Python API, follow the processs in Bugs / Feature Requests. For support with hardware, the
driver runtime or any other questions not specific to the Python API, please visit NI Community Forums.

5

https://forums.ni.com/

NI-DCPower Python API Documentation, Release 1.4.8

6 Chapter 3. Support / Feedback

CHAPTER

FOUR

BUGS / FEATURE REQUESTS

To report a bug or submit a feature request specific to Python API, please use the GitHub issues page.

Fill in the issue template as completely as possible and we will respond as soon as we can.

4.1 nidcpower module

4.1.1 Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit
ni.com/downloads to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip:

$ python -m pip install nidcpower~=1.4.8

4.1.2 Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure
voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session(resource_name='PXI1Slot2/0') as session:
session.measure_record_length = 20
session.measure_record_length_is_finite = True
session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
session.voltage_level = 5.0

session.commit()
print('Effective measurement rate: {} S/s'.format(session.measure_record_delta_time /

→˓ 1))

samples_acquired = 0
print('Channel Num Voltage Current In Compliance')
row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
with session.initiate():

channel_indices = '0-{}'.format(session.channel_count - 1)
(continues on next page)

7

https://github.com/ni/nimi-python/issues
http://www.ni.com/downloads/
http://pypi.python.org/pypi/pip

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

channels = session.get_channel_names(channel_indices)
for i, channel_name in enumerate(channels):

samples_acquired = 0
while samples_acquired < 20:

measurements = session.channels[channel_name].fetch_
→˓multiple(count=session.fetch_backlog)

samples_acquired += len(measurements)
for i in range(len(measurements)):

print(row_format.format(channel_name, i, measurements[i].voltage,␣
→˓measurements[i].current, measurements[i].in_compliance))

Other usage examples can be found on GitHub.

4.1.3 API Reference

Session

class nidcpower.Session(self , resource_name, channels=None, reset=False, options={},
independent_channels=True, *, grpc_options=None)

Creates and returns a new NI-DCPower session to the instrument(s) and channel(s) specified in resource name
to be used in all subsequent NI-DCPower method calls. With this method, you can optionally set the initial state
of the following session properties:

• nidcpower.Session.simulate

• nidcpower.Session.driver_setup

After calling this method, the specified channel or channels will be in the Uncommitted state.

To place channel(s) in a known start-up state when creating a new session, set reset to True. This action is
equivalent to using the nidcpower.Session.reset() method immediately after initializing the session.

To open a session and leave the channel(s) in an existing configuration without passing through a transitional
output state, set reset to False. Next, configure the channel(s) as in the previous session, change the desired
settings, and then call the nidcpower.Session.initiate() method to write both settings.

Details of Independent Channel Operation

With this method and channel-based NI-DCPower methods and properties, you can use any channels in the ses-
sion independently. For example, you can initiate a subset of channels in the session with nidcpower.Session.
initiate(), and the other channels in the session remain in the Uncommitted state.

When you initialize with independent channels, each channel steps through the NI-DCPower programming state
model independently of all other channels, and you can specify a subset of channels for most operations.

Note You can make concurrent calls to a session from multiple threads, but the session executes the calls one
at a time. If you specify multiple channels for a method or property, the session may perform the operation on
multiple channels in parallel, though this is not guaranteed, and some operations may execute sequentially.

Parameters

• resource_name (str, list, tuple) – Specifies the resource name as seen in Measure-
ment & Automation Explorer (MAX) or lsni, for example “PXI1Slot3” where “PXI1Slot3”
is an instrument’s resource name. If independent_channels is False, resource name can
also be a logical IVI name.

8 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/tree/master/src/nidcpower/examples
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple

NI-DCPower Python API Documentation, Release 1.4.8

If independent_channels is True, resource name can be names of the in-
strument(s) and the channel(s) to initialize. Specify the instrument(s) and
channel(s) using the form “PXI1Slot3/0,PXI1Slot3/2-3,PXI1Slot4/2-3 or
PXI1Slot3/0,PXI1Slot3/2:3,PXI1Slot4/2:3”, where “PXI1Slot3” and “PXI1Slot4” are
instrument resource names followed by channels. If you exclude a channels string after an
instrument resource name, all channels of the instrument(s) are included in the session.

• channels (str, list, range, tuple) – For new applications, use the default value of
None and specify the channels in resource name.

Specifies which channel(s) to include in a new session. Specify multiple channels by using a
channel list or a channel range. A channel list is a comma (,) separated sequence of channel
names (for example, 0,2 specifies channels 0 and 2). A channel range is a lower bound chan-
nel followed by a hyphen (-) or colon (:) followed by an upper bound channel (for example,
0-2 specifies channels 0, 1, and 2).

If independent_channels is False, this argument specifies which channels to include in a
legacy synchronized channels session. If you do not specify any channels, by default all
channels on the device are included in the session.

If independent_channels is True, this argument combines with resource name to specify
which channels to include in an independent channels session. Initializing an independent
channels session with a channels argument is deprecated.

• reset (bool) – Specifies whether to reset channel(s) during the initialization procedure.

• options (dict) – Specifies the initial value of certain properties for the session. The syntax
for options is a dictionary of properties with an assigned value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not specify a value for a
property, the default value is used.

Advanced Example: { ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’,
‘BoardType’: ‘<type>’ } }

Property Default
range_check True
query_instrument_status False
cache True
simulate False
record_value_coersions False
driver_setup {}

• independent_channels (bool) – Specifies whether to initialize the session with indepen-
dent channels. Set this argument to False on legacy applications or if you are unable to
upgrade your NI-DCPower driver runtime to 20.6 or higher.

• grpc_options (nidcpower.GrpcSessionOptions) – MeasurementLink gRPC session
options

4.1. nidcpower module 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

Methods

abort

nidcpower.Session.abort()

Transitions the specified channel(s) from the Running state to the Uncommitted state. If a sequence
is running, it is stopped. Any configuration methods called after this method are not applied until
the nidcpower.Session.initiate() method is called. If power output is enabled when you call
the nidcpower.Session.abort()method, the channels remain in their current state and continue
providing power.

Use the nidcpower.Session.ConfigureOutputEnabled() method to disable power output on a
per channel basis. Use the nidcpower.Session.reset()method to disable output on all channels.

Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for information
about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].abort()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.abort()

clear_latched_output_cutoff_state

nidcpower.Session.clear_latched_output_cutoff_state(output_cutoff_reason)
Clears the state of an output cutoff that was engaged. To clear the state for all output cutoff reasons,
use ALL.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].clear_latched_output_cutoff_state()

10 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.clear_latched_output_cutoff_state()

Parameters
output_cutoff_reason (nidcpower.OutputCutoffReason) – Specifies the rea-
sons for which to clear the output cutoff state.

ALL Clears all output cutoff conditions
VOLTAGE_OUTPUT_HIGHClears cutoffs caused when the output exceeded the high cutoff

limit for voltage output
VOLTAGE_OUTPUT_LOWClears cutoffs caused when the output fell below the low cutoff

limit for voltage output
VOLTAGE_MEASURE_HIGHClears cutoffs caused when the measured voltage exceeded the

high cutoff limit for voltage output
VOLTAGE_MEASURE_LOWClears cutoffs caused when the measured voltage fell below the

low cutoff limit for voltage output
CURRENT_MEASURE_HIGHClears cutoffs caused when the measured current exceeded the

high cutoff limit for current output
CURRENT_MEASURE_LOWClears cutoffs caused when the measured current fell below the

low cutoff limit for current output
VOLTAGE_CHANGE_HIGHClears cutoffs caused when the voltage slew rate increased beyond

the positive change cutoff for voltage output
VOLTAGE_CHANGE_LOWClears cutoffs caused when the voltage slew rate decreased be-

yond the negative change cutoff for voltage output
CURRENT_CHANGE_HIGHClears cutoffs caused when the current slew rate increased beyond

the positive change cutoff for current output
CURRENT_CHANGE_LOWClears cutoffs caused when the voltage slew rate decreased be-

yond the negative change cutoff for current output
CURRENT_SATURATEDClears cutoffs caused when the measured current saturates the

current range

close

nidcpower.Session.close()

Closes the session specified in vi and deallocates the resources that NI-DCPower reserves. If power
output is enabled when you call this method, the channels remain in their existing state and continue
providing power. Use the nidcpower.Session.ConfigureOutputEnabled() method to disable
power output on a per channel basis. Use the nidcpower.Session.reset() method to disable
power output on all channel(s).

Related Topics:

Programming States

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Note: One or more of the referenced methods are not in the Python API for this driver.

4.1. nidcpower module 11

NI-DCPower Python API Documentation, Release 1.4.8

Note: This method is not needed when using the session context manager

commit

nidcpower.Session.commit()

Applies previously configured settings to the specified channel(s). Calling this method moves the
NI-DCPower session from the Uncommitted state into the Committed state. After calling this
method, modifying any property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate() method to transition to the Running state. Refer to the Pro-
gramming States topic in the NI DC Power Supplies and SMUs Help for details about the specific
NI-DCPower software states.

Related Topics:

Programming States

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].commit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.commit()

configure_aperture_time

nidcpower.Session.configure_aperture_time(aperture_time,
units=nidcpower.ApertureTimeUnits.SECONDS)

Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture Time topic for your device in the
NI DC Power Supplies and SMUs Help for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some unsupported value, NI-DCPower
coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise Rejection topic for your device
in the NI DC Power Supplies and SMUs Help for more information about how to configure your
measurements.

Related Topics:

Aperture Time

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

12 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].configure_aperture_time()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_aperture_time()

Parameters

• aperture_time (float) – Specifies the aperture time. Refer to the Aperture Time
topic for your device in the NI DC Power Supplies and SMUs Help for more infor-
mation.

• units (nidcpower.ApertureTimeUnits) – Specifies the units for apertureTime.
Defined Values:

SECONDS Specifies seconds.
POWER_LINE_CYCLES Specifies Power Line Cycles.

configure_lcr_compensation

nidcpower.Session.configure_lcr_compensation(compensation_data)
Applies previously generated open, short, load, as well as open and short custom cable compensation
data to LCR measurements.

This method applies open, short and load compensation data when you have set the nidcpower.
Session.lcr_open_short_load_compensation_data_source property to AS_CONFIGURED,
and it also applies custom cable compensation data when you have set the nidcpower.Session.
cable_length property to CUSTOM_AS_CONFIGURED.

Call this method after you have obtained LCR compensation data.

If the nidcpower.Session.lcr_short_custom_cable_compensation_enabled
property is set to True, you must generate data with both nidcpower.Session.
perform_lcr_open_custom_cable_compensation() and nidcpower.Session.
perform_lcr_short_custom_cable_compensation(); if False, you must only use
nidcpower.Session.perform_lcr_open_custom_cable_compensation(), and NI-
DCPower uses default short data.

Call nidcpower.Session.get_lcr_compensation_data() and pass the compensation data to
this method.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_lcr_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_lcr_compensation()

4.1. nidcpower module 13

https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

Parameters
compensation_data (bytes) – The open, short and load compensation data to apply.

configure_lcr_custom_cable_compensation

nidcpower.Session.configure_lcr_custom_cable_compensation(custom_cable_compensation_data)
This method is deprecated. Use nidcpower.Session.configure_lcr_compensation() in-
stead.

Applies previously generated open and short custom cable compensation data to LCR measurements.

This method applies custom cable compensation data when you have set nidcpower.Session.
cable_length property to CUSTOM_AS_CONFIGURED.

Call this method after you have obtained custom cable compensation data.

If nidcpower.Session.lcr_short_custom_cable_compensation_enabled prop-
erty is set to True, you must generate data with both nidcpower.Session.
perform_lcr_open_custom_cable_compensation() and nidcpower.Session.
perform_lcr_short_custom_cable_compensation(); if False, you must only use
nidcpower.Session.perform_lcr_open_custom_cable_compensation(), and NI-
DCPower uses default short data.

Call nidcpower.Session.get_lcr_custom_cable_compensation_data() and pass the cus-
tom cable compensation data to this method.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].configure_lcr_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_lcr_custom_cable_compensation()

Parameters
custom_cable_compensation_data (bytes) – The open and short custom cable
compensation data to apply.

create_advanced_sequence

nidcpower.Session.create_advanced_sequence(sequence_name, property_names,
set_as_active_sequence=True)

Creates an empty advanced sequence. Call the nidcpower.Session.
create_advanced_sequence_step() method to add steps to the active advanced sequence.

You can create multiple advanced sequences in a session.

Support for this method

14 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

NI-DCPower Python API Documentation, Release 1.4.8

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence methods is
unsupported.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence_step()

Note: This method is not supported on all devices. Refer to Supported Methods by Device for more
information about supported devices.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence()

Parameters

• sequence_name (str) – Specifies the name of the sequence to create.

• property_names (list of str) – Specifies the names of the properties you re-
configure per step in the advanced sequence. The following table lists which prop-
erties can be configured in an advanced sequence for each NI-DCPower device that
supports advanced sequencing. A Yes indicates that the property can be configured
in advanced sequencing. An No indicates that the property cannot be configured in
advanced sequencing.

Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4147 PXIe-4162/4163 PXIe-4190
nidcpower.Session.aperture_time Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.dc_noise_rejection Yes No Yes No Yes No No Yes Yes Yes
nidcpower.Session.instrument_mode No No No No No No No No No Yes
nidcpower.Session.lcr_actual_load_reactance No No No No No No No No No Yes
nidcpower.Session.lcr_actual_load_resistance No No No No No No No No No Yes
nidcpower.Session.lcr_current_amplitude No No No No No No No No No Yes
nidcpower.Session.lcr_current_range No No No No No No No No No Yes
nidcpower.Session.lcr_custom_measurement_time No No No No No No No No No Yes
nidcpower.Session.lcr_dc_bias_current_level No No No No No No No No No Yes
nidcpower.Session.lcr_dc_bias_current_range No No No No No No No No No Yes
nidcpower.Session.lcr_dc_bias_source No No No No No No No No No Yes
nidcpower.Session.lcr_dc_bias_voltage_level No No No No No No No No No Yes
nidcpower.Session.lcr_dc_bias_voltage_range No No No No No No No No No Yes

continues on next page

4.1. nidcpower module 15

REPLACE_DRIVER_SPECIFIC_URL_2(nidcpowercref.chm',%20'supportedfunctions)
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

NI-DCPower Python API Documentation, Release 1.4.8

Table 1 – continued from previous page
Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4147 PXIe-4162/4163 PXIe-4190
nidcpower.Session.lcr_frequency No No No No No No No No No Yes
nidcpower.Session.lcr_impedance_auto_range No No No No No No No No No Yes
nidcpower.Session.lcr_impedance_range No No No No No No No No No Yes
nidcpower.Session.lcr_load_compensation_enabled No No No No No No No No No Yes
nidcpower.Session.lcr_measured_load_reactance No No No No No No No No No Yes
nidcpower.Session.lcr_measured_load_resistance No No No No No No No No No Yes
nidcpower.Session.lcr_measurement_time No No No No No No No No No Yes
nidcpower.Session.lcr_open_compensation_enabled No No No No No No No No No Yes
nidcpower.Session.lcr_open_conductance No No No No No No No No No Yes
nidcpower.Session.lcr_open_susceptance No No No No No No No No No Yes
nidcpower.Session.lcr_short_compensation_enabled No No No No No No No No No Yes
nidcpower.Session.lcr_short_reactance No No No No No No No No No Yes
nidcpower.Session.lcr_short_resistance No No No No No No No No No Yes
nidcpower.Session.lcr_source_delay_mode No No No No No No No No No Yes
nidcpower.Session.lcr_stimulus_function No No No No No No No No No Yes
nidcpower.Session.lcr_voltage_amplitude No No No No No No No No No Yes
nidcpower.Session.lcr_voltage_range No No No No No No No No No Yes
nidcpower.Session.measure_record_length Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.sense Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.ovp_enabled Yes Yes Yes No No No No No No No
nidcpower.Session.ovp_limit Yes Yes Yes No No No No No No No
nidcpower.Session.pulse_bias_delay Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_off_time Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_on_time Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.source_delay Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_compensation_frequency Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.current_gain_bandwidth Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.current_pole_zero_ratio Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.voltage_compensation_frequency Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.voltage_gain_bandwidth Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.voltage_pole_zero_ratio Yes No Yes No Yes No Yes Yes Yes Yes
nidcpower.Session.current_level Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_level_range Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_limit Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_limit_high Yes Yes Yes Yes Yes Yes Yes Yes No Yes
nidcpower.Session.voltage_limit_low Yes Yes Yes Yes Yes Yes Yes Yes No Yes
nidcpower.Session.voltage_limit_range Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_limit Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.current_limit_high Yes Yes Yes Yes Yes Yes Yes Yes No Yes
nidcpower.Session.current_limit_low Yes Yes Yes Yes Yes Yes Yes Yes No Yes
nidcpower.Session.current_limit_range Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_level Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.voltage_level_range Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_enabled Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_function Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
nidcpower.Session.output_resistance Yes No Yes No Yes No Yes Yes No No
nidcpower.Session.pulse_bias_current_level Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_voltage_limit Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_voltage_limit_high Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_voltage_limit_low Yes Yes Yes Yes Yes No No No No No

continues on next page

16 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Table 1 – continued from previous page
Property PXIe-4135 PXIe-4136 PXIe-4137 PXIe-4138 PXIe-4139 PXIe-4140/4142/4144 PXIe-4141/4143/4145 PXIe-4147 PXIe-4162/4163 PXIe-4190
nidcpower.Session.pulse_current_level Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_current_level_range Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_limit Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_limit_high Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_limit_low Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_limit_range Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_current_limit Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_current_limit_high Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_current_limit_low Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_bias_voltage_level Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_current_limit Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_current_limit_high Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_current_limit_low Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_current_limit_range Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_level Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.pulse_voltage_level_range Yes Yes Yes Yes Yes No No No No No
nidcpower.Session.transient_response Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

• set_as_active_sequence (bool) – Specifies that this current sequence is active.

create_advanced_sequence_commit_step

nidcpower.Session.create_advanced_sequence_commit_step(set_as_active_step=True)
Creates a Commit step in the Active advanced sequence. A Commit step configures channels to a
user-defined known state before starting the advanced sequence. When a Commit step exists in the
Active advanced sequence, you cannot set the output method to Pulse Voltage or Pulse Current in
either the Commit step (-1) or step 0. When you create an advanced sequence step, each property you
passed to the nidcpower.Session.create_advanced_sequence()method is reset to its default
value for that step unless otherwise specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence methods is
unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence()

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search
ni.com for Supported Methods by Device.

4.1. nidcpower module 17

https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_commit_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_commit_step()

Parameters
set_as_active_step (bool) – Specifies whether the step created with this method
is active in the Active advanced sequence.

create_advanced_sequence_step

nidcpower.Session.create_advanced_sequence_step(set_as_active_step=True)
Creates a new advanced sequence step in the advanced sequence specified by the Active advanced
sequence. When you create an advanced sequence step, each property you passed to the nidcpower.
Session.create_advanced_sequence() method is reset to its default value for that step unless
otherwise specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence methods is
unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

nidcpower.Session.create_advanced_sequence()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_step()

Parameters
set_as_active_step (bool) – Specifies whether the step created with this method
is active in the Active advanced sequence.

18 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

delete_advanced_sequence

nidcpower.Session.delete_advanced_sequence(sequence_name)
Deletes a previously created advanced sequence and all the advanced sequence steps in the advanced
sequence.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence methods is
unsupported.

Related Topics:

Advanced Sequence Mode

Programming States

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].delete_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.delete_advanced_sequence()

Parameters
sequence_name (str) – specifies the name of the sequence to delete.

disable

nidcpower.Session.disable()

This method performs the same actions as the nidcpower.Session.reset() method, except that
this method also immediately sets the nidcpower.Session.output_enabled property to False.

This method opens the output relay on devices that have an output relay.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

4.1. nidcpower module 19

https://docs.python.org/3/library/stdtypes.html#str

NI-DCPower Python API Documentation, Release 1.4.8

export_attribute_configuration_buffer

nidcpower.Session.export_attribute_configuration_buffer()

Exports the property configuration of the session to the specified configuration buffer.

You can export and import session property configurations only between devices with identical model
numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped
to the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the importing
session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Return type
bytes

Returns
Specifies the byte array buffer to be populated with the exported property configuration.

export_attribute_configuration_file

nidcpower.Session.export_attribute_configuration_file(file_path)
Exports the property configuration of the session to the specified file.

You can export and import session property configurations only between devices with identical model
numbers and the same number of configured channels.

This method verifies that the properties you have configured for the session are valid. If the config-
uration is invalid, NI-DCPower returns an error.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

20 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#bytes

NI-DCPower Python API Documentation, Release 1.4.8

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped
to the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the importing
session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters
file_path (str) – Specifies the absolute path to the file to contain the exported prop-
erty configuration. If you specify an empty or relative path, this method returns an
error. Default file extension: .nidcpowerconfig

fetch_multiple

nidcpower.Session.fetch_multiple(count, timeout=hightime.timedelta(seconds=1.0))
Returns a list of named tuples (Measurement) that were previously taken and are stored in the NI-
DCPower buffer. This method should not be used when the nidcpower.Session.measure_when
property is set to ON_DEMAND. You must first call nidcpower.Session.initiate() before calling
this method.

Fields in Measurement:

• voltage (float)

• current (float)

• in_compliance (bool)

• channel (str)

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

4.1. nidcpower module 21

https://docs.python.org/3/library/stdtypes.html#str

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.fetch_multiple()

Parameters

• count (int) – Specifies the number of measurements to fetch.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – Specifies the maximum time allowed for this method to complete. If
the method does not complete within this time interval, NI-DCPower returns an
error. Default value: 1.0 second

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type
list of Measurement

Returns

List of named tuples with fields:

• voltage (float)

• current (float)

• in_compliance (bool)

• channel (str)

fetch_multiple_lcr

nidcpower.Session.fetch_multiple_lcr(count, timeout=hightime.timedelta(seconds=1.0))
Returns a list of previously measured LCRMeasurement instances on the specified channel that have
been taken and stored in a buffer.

To use this method:

• Set nidcpower.Session.measure_when property to AUTOMATICALLY_AFTER_SOURCE_COMPLETE
or ON_MEASURE_TRIGGER

• Put the channel in the Running state (call nidcpower.Session.initiate())

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].fetch_multiple_lcr()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.fetch_multiple_lcr()

22 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-DCPower Python API Documentation, Release 1.4.8

Parameters

• count (int) – Specifies the number of measurements to fetch.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – Specifies the maximum time allowed for this method to complete, in
seconds. If the method does not complete within this time interval, NI-DCPower
returns an error. Default value: 1.0 second

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Return type
list of LCRMeasurement

Returns

A list of LCRMeasurement instances.

4.1. nidcpower module 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/stdtypes.html#list

NI-DCPower Python API Documentation, Release 1.4.8

channel The channel name associated with this LCR measurement.
vdc float The measured DC voltage, in volts.
idc float The measured DC current, in amps.
stimu-
lus_frequency

float The frequency of the LCR test signal, in Hz.

ac_voltagecom-
plex

The measured AC voltage, in volts RMS.

ac_current com-
plex

The measured AC current, in amps RMS.

z com-
plex

The complex impedance.

z_magnitude_and_phasetuple of
float

The magnitude, in ohms, and phase angle, in degrees, of the
complex impedance.

y com-
plex

The complex admittance.

y_magnitude_and_phasetuple of
float

The magnitude, in siemens, and phase angle, in degrees, of
the complex admittance.

se-
ries_lcr

LCR The inductance, in henrys, the capacitance, in farads, and the
resistance, in ohms, as measured using a series circuit model.

paral-
lel_lcr

LCR The inductance, in henrys, the capacitance, in farads, and
the resistance, in ohms, as measured using a parallel circuit
model.

d float The dissipation factor of the circuit. The dimensionless dissi-
pation factor is directly proportional to how quickly an oscil-
lating system loses energy. D is the reciprocal of Q, the quality
factor.

q float The quality factor of the circuit. The dimensionless quality
factor is inversely proportional to the degree of damping in a
system. Q is the reciprocal of D, the dissipation factor.

mea-
sure-
ment_mode

enums.InstrumentModeThe measurement mode: SMU - The channel(s) are operating
as a power supply/SMU. LCR - The channel(s) are operating
as an LCR meter.

dc_in_compliancebool Indicates whether the output was in DC compliance at the time
the measurement was taken.

ac_in_compliancebool Indicates whether the output was in AC compliance at the time
the measurement was taken.

unbal-
anced

bool Indicates whether the output was unbalanced at the time the
measurement was taken.

get_channel_name

nidcpower.Session.get_channel_name(index)
Retrieves the output channelName that corresponds to the requested index. Use the nidcpower.
Session.channel_count property to determine the upper bound of valid values for index.

Parameters
index (int) – Specifies which channel name to return. The index values begin at 1.

Return type
str

Returns
Returns the channel name that corresponds to index.

24 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

NI-DCPower Python API Documentation, Release 1.4.8

get_channel_names

nidcpower.Session.get_channel_names(indices)
Returns a list of channel names for the given channel indices.

Parameters
indices (basic sequence types or str or int) – Index list for the channels
in the session. Valid values are from zero to the total number of channels in the session
minus one. The index string can be one of the following formats:

• A comma-separated list—for example, “0,2,3,1”

• A range using a hyphen—for example, “0-3”

• A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both
out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space char-
acters, including spaces, tabs, feeds, and carriage returns, are allowed between charac-
ters. Ranges can be incrementing or decrementing.

Return type
list of str

Returns
The channel name(s) at the specified indices.

get_ext_cal_last_date_and_time

nidcpower.Session.get_ext_cal_last_date_and_time()

Returns the date and time of the last successful calibration.

Return type
hightime.datetime

Returns
Indicates date and time of the last calibration.

get_ext_cal_last_temp

nidcpower.Session.get_ext_cal_last_temp()

Returns the onboard temperature of the device, in degrees Celsius, during the last successful exter-
nal calibration.

Return type
float

Returns
Returns the onboard temperature of the device, in degrees Celsius, during the last
successful external calibration.

4.1. nidcpower module 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

get_ext_cal_recommended_interval

nidcpower.Session.get_ext_cal_recommended_interval()

Returns the recommended maximum interval, in months, between external calibrations.

Return type
hightime.timedelta

Returns
Specifies the recommended maximum interval, in months, between external calibra-
tions.

get_lcr_compensation_data

nidcpower.Session.get_lcr_compensation_data()

Collects previously generated open, short, load, and custom cable compensation data so you can then
apply it to LCR measurements with nidcpower.Session.configure_lcr_compensation().

Call this method after you have obtained the compensation data of all types (open, short,
load, open custom cable compensation, and short custom cable compensation) you want
to apply to your measurements. Pass the compensation data to nidcpower.Session.
configure_lcr_compensation()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_lcr_compensation_data()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_compensation_data()

Return type
bytes

Returns
The open, short, load, and custom cable compensation data to retrieve.

get_lcr_compensation_last_date_and_time

nidcpower.Session.get_lcr_compensation_last_date_and_time(compensation_type)
Returns the date and time the specified type of compensation data for LCR measurements was most
recently generated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

26 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#bytes

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_lcr_compensation_last_date_and_time()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_compensation_last_date_and_time()

Parameters
compensation_type (nidcpower.LCRCompensationType) – Specifies the type of
compensation for LCR measurements.

Return type
hightime.datetime

Returns
Returns the date and time the specified type of compensation data for LCR measure-
ments was most recently generated.

get_lcr_custom_cable_compensation_data

nidcpower.Session.get_lcr_custom_cable_compensation_data()

This method is deprecated. Use nidcpower.Session.get_lcr_compensation_data() instead.

Collects previously generated open and short custom cable compensation data
so you can then apply it to LCR measurements with nidcpower.Session.
configure_lcr_custom_cable_compensation().

Call this method after you have obtained open and short custom cable compensa-
tion data. Pass the custom cable compensation data to nidcpower.Session.
configure_lcr_custom_cable_compensation()

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].get_lcr_custom_cable_compensation_data()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_custom_cable_compensation_data()

Return type
bytes

Returns
The open and short custom cable compensation data to retrieve.

4.1. nidcpower module 27

https://docs.python.org/3/library/stdtypes.html#bytes

NI-DCPower Python API Documentation, Release 1.4.8

get_self_cal_last_date_and_time

nidcpower.Session.get_self_cal_last_date_and_time()

Returns the date and time of the oldest successful self-calibration from among the channels in the
session.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Return type
hightime.datetime

Returns
Returns the date and time the device was last calibrated.

get_self_cal_last_temp

nidcpower.Session.get_self_cal_last_temp()

Returns the onboard temperature of the device, in degrees Celsius, during the oldest successful self-
calibration from among the channels in the session.

For example, if you have a session using channels 1 and 2, and you perform a self-calibration on
channel 1 with a device temperature of 25 degrees Celsius at 2:00, and a self-calibration was per-
formed on channel 2 at 27 degrees Celsius at 3:00 on the same day, this method returns 25 for the
temperature parameter.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Return type
float

Returns
Returns the onboard temperature of the device, in degrees Celsius, during the oldest
successful calibration.

import_attribute_configuration_buffer

nidcpower.Session.import_attribute_configuration_buffer(configuration)
Imports a property configuration to the session from the specified configuration buffer.

You can export and import session property configurations only between devices with identical model
numbers and the same number of configured channels.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped

28 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

to the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the importing
session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming States

Using Properties and Properties

Setting Properties and Properties Before Reading Them

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters
configuration (bytes) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

nidcpower.Session.import_attribute_configuration_file(file_path)
Imports a property configuration to the session from the specified file.

You can export and import session property configurations only between devices with identical model
numbers and the same number of configured channels.

Support for this Method

Calling this method in Sequence Source Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between NI-DCPower sessions that
were initialized with different channels, the configurations of the exporting channels are mapped
to the importing channels in the order you specify in the channelName input to the nidcpower.
Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting session and 1,2 for the importing
session:

• The configuration exported from channel 0 is imported into channel 1.

• The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming States

Using Properties and Properties

Setting Properties and Properties Before Reading Them

4.1. nidcpower module 29

https://docs.python.org/3/library/stdtypes.html#bytes

NI-DCPower Python API Documentation, Release 1.4.8

Note: This method will return an error if the total number of channels initialized for the exporting
session is not equal to the total number of channels initialized for the importing session.

Parameters
file_path (str) – Specifies the absolute path to the file containing the property con-
figuration to import. If you specify an empty or relative path, this method returns an
error. Default File Extension: .nidcpowerconfig

initiate

nidcpower.Session.initiate()

Starts generation or acquisition, causing the specified channel(s) to leave the Uncommitted state or
Committed state and enter the Running state. To return to the Uncommitted state call the nidcpower.
Session.abort()method. Refer to the Programming States topic in the NI DC Power Supplies and
SMUs Help for information about the specific NI-DCPower software states.

Related Topics:

Programming States

Note: This method will return a Python context manager that will initiate on entering and abort on
exit.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].initiate()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.initiate()

lock

nidcpower.Session.lock()

Obtains a multithread lock on the device session. Before doing so, the software waits until all other execution
threads release their locks on the device session.

Other threads may have obtained a lock on this session for the following reasons:

• The application called the nidcpower.Session.lock() method.

• A call to NI-DCPower locked the session.

• After a call to the nidcpower.Session.lock()method returns successfully, no other threads can access
the device session until you call the nidcpower.Session.unlock()method or exit out of the with block
when using lock context manager.

• Use the nidcpower.Session.lock()method and the nidcpower.Session.unlock()method around
a sequence of calls to instrument driver methods if you require that the device retain its settings through
the end of the sequence.

30 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str

NI-DCPower Python API Documentation, Release 1.4.8

You can safely make nested calls to the nidcpower.Session.lock() method within the same thread. To
completely unlock the session, you must balance each call to the nidcpower.Session.lock() method with a
call to the nidcpower.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls is to use lock
as a context manager

with nidcpower.Session('dev1') as session:
with session.lock():

Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

Return type
context manager

Returns
When used in a with statement, nidcpower.Session.lock() acts as a context manager and
unlock will be called when the with block is exited

measure

nidcpower.Session.measure(measurement_type)
Returns the measured value of either the voltage or current on the specified channel. Each call to this
method blocks other method calls until the hardware returns the measurement. To measure multiple
channels, use the nidcpower.Session.measure_multiple() method.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure()

Parameters
measurement_type (nidcpower.MeasurementTypes) – Specifies whether a volt-
age or current value is measured. Defined Values:

VOLTAGE The device measures voltage.
CURRENT The device measures current.

Return type
float

Returns
Returns the value of the measurement, either in volts for voltage or amps for current.

4.1. nidcpower module 31

https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

measure_multiple

nidcpower.Session.measure_multiple()

Returns a list of named tuples (Measurement) containing the measured voltage and current values on
the specified channel(s). Each call to this method blocks other method calls until the measurements
are returned from the device. The order of the measurements returned in the array corresponds to
the order on the specified channel(s).

Fields in Measurement:

• voltage (float)

• current (float)

• in_compliance (bool) - Always None

• channel (str)

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure_multiple()

Return type
list of Measurement

Returns

List of named tuples with fields:

• voltage (float)

• current (float)

• in_compliance (bool) - Always None

• channel (str)

measure_multiple_lcr

nidcpower.Session.measure_multiple_lcr()

Measures and returns a list of LCRMeasurement instances on the specified channel(s).

To use this method:

• Set nidcpower.Session.instrument_mode property to LCR

• Set nidcpower.Session.measure_when property to ON_DEMAND

• Put the channel(s) in the Running state (call nidcpower.Session.initiate())

32 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#list

NI-DCPower Python API Documentation, Release 1.4.8

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].measure_multiple_lcr()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure_multiple_lcr()

Return type
list of LCRMeasurement

Returns

A list of LCRMeasurement instances.

4.1. nidcpower module 33

https://docs.python.org/3/library/stdtypes.html#list

NI-DCPower Python API Documentation, Release 1.4.8

channel The channel name associated with this LCR measurement.
vdc float The measured DC voltage, in volts.
idc float The measured DC current, in amps.
stimu-
lus_frequency

float The frequency of the LCR test signal, in Hz.

ac_voltagecom-
plex

The measured AC voltage, in volts RMS.

ac_current com-
plex

The measured AC current, in amps RMS.

z com-
plex

The complex impedance.

z_magnitude_and_phasetuple of
float

The magnitude, in ohms, and phase angle, in degrees, of the
complex impedance.

y com-
plex

The complex admittance.

y_magnitude_and_phasetuple of
float

The magnitude, in siemens, and phase angle, in degrees, of
the complex admittance.

se-
ries_lcr

LCR The inductance, in henrys, the capacitance, in farads, and the
resistance, in ohms, as measured using a series circuit model.

paral-
lel_lcr

LCR The inductance, in henrys, the capacitance, in farads, and
the resistance, in ohms, as measured using a parallel circuit
model.

d float The dissipation factor of the circuit. The dimensionless dissi-
pation factor is directly proportional to how quickly an oscil-
lating system loses energy. D is the reciprocal of Q, the quality
factor.

q float The quality factor of the circuit. The dimensionless quality
factor is inversely proportional to the degree of damping in a
system. Q is the reciprocal of D, the dissipation factor.

mea-
sure-
ment_mode

enums.InstrumentModeThe measurement mode: SMU - The channel(s) are operating
as a power supply/SMU. LCR - The channel(s) are operating
as an LCR meter.

dc_in_compliancebool Indicates whether the output was in DC compliance at the time
the measurement was taken.

ac_in_compliancebool Indicates whether the output was in AC compliance at the time
the measurement was taken.

unbal-
anced

bool Indicates whether the output was unbalanced at the time the
measurement was taken.

perform_lcr_load_compensation

nidcpower.Session.perform_lcr_load_compensation(compensation_spots)
Generates load compensation data for LCR measurements for the test spots you specify.

You must physically configure your LCR circuit with an appropriate reference load to use this method
to generate valid load compensation data.

When you call this method:

• The load compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

• Most NI-DCPower properties in the session are reset to their default values. Rewrite the values

34 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

of any properties you want to maintain.

To apply the load compensation data you generate with this method to your LCR measurements, set
the nidcpower.Session.lcr_load_compensation_enabled property to True.

Load compensation data are generated only for those specific frequencies you define with this method;
load compensation is not interpolated from the specific frequencies you define and applied to other
frequencies.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_load_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_load_compensation()

Parameters
compensation_spots (list of LCRLoadCompensationSpot) – Defines the fre-
quencies and DUT specifications to use for LCR load compensation.

You can specify <=1000 spot frequencies.

frequency The spot frequency, in Hz.
refer-
ence_value_type

A known specification value of your DUT to use as the basis for load
compensation.

refer-
ence_value

A value that describes the reference_value_type specification. Use
as indicated by the reference_value_type option you choose.

perform_lcr_open_compensation

nidcpower.Session.perform_lcr_open_compensation(additional_frequencies=None)
Generates open compensation data for LCR measurements based on a default set of test frequencies
and, optionally, additional frequencies you can specify.

You must physically configure an open LCR circuit to use this method to generate valid open com-
pensation data.

When you call this method:

• The open compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

• Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

To apply the open compensation data you generate with this method to your LCR measurements, set
the nidcpower.Session.lcr_open_compensation_enabled property to True.

4.1. nidcpower module 35

https://docs.python.org/3/library/stdtypes.html#list

NI-DCPower Python API Documentation, Release 1.4.8

Corrections for frequencies other than the default frequencies or any additional frequencies you spec-
ify are interpolated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Note: Default Open Compensation Frequencies: By default, NI-DCPower uses the following fre-
quencies for LCR open compensation:

• 10 logarithmic steps at 1 kHz frequency decade

• 10 logarithmic steps at 10 kHz frequency decade

• 100 logarithmic steps at 100 kHz frequency decade

• 100 logarithmic steps at 1 MHz frequency decade

The actual frequencies used depend on the bandwidth of your instrument.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_open_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_open_compensation()

Parameters
additional_frequencies (list of float) – Defines a further set of frequencies,
in addition to the default frequencies, to perform the compensation for. You can specify
<=200 additional frequencies.

perform_lcr_open_custom_cable_compensation

nidcpower.Session.perform_lcr_open_custom_cable_compensation()

Generates open custom cable compensation data for LCR measurements.

To use this method, you must physically configure an open LCR circuit to generate valid open custom
cable compensation data.

When you call this method:

• The open compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

• Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

36 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_open_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_open_custom_cable_compensation()

perform_lcr_short_compensation

nidcpower.Session.perform_lcr_short_compensation(additional_frequencies=None)
Generates short compensation data for LCR measurements based on a default set of test frequencies
and, optionally, additional frequencies you can specify.

You must physically configure your LCR circuit with a short to use this method to generate valid
short compensation data.

When you call this method:

• The short compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

• Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

To apply the short compensation data you generate with this method to your LCR measurements, set
the nidcpower.Session.lcr_short_compensation_enabled property to True.

Corrections for frequencies other than the default frequencies or any additional frequencies you spec-
ify are interpolated.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Note: Default Short Compensation Frequencies: By default, NI-DCPower uses the following fre-
quencies for LCR short compensation:

• 10 logarithmic steps at 1 kHz frequency decade

• 10 logarithmic steps at 10 kHz frequency decade

• 100 logarithmic steps at 100 kHz frequency decade

• 100 logarithmic steps at 1 MHz frequency decade

The actual frequencies used depend on the bandwidth of your instrument.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_short_compensation()

4.1. nidcpower module 37

NI-DCPower Python API Documentation, Release 1.4.8

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_short_compensation()

Parameters
additional_frequencies (list of float) – Defines a further set of frequencies,
in addition to the default frequencies, to perform the compensation for. You can specify
<=200 additional frequencies.

perform_lcr_short_custom_cable_compensation

nidcpower.Session.perform_lcr_short_custom_cable_compensation()

Generates short custom cable compensation data for LCR measurements.

To use this method:

• You must physically configure your LCR circuit with a short to generate valid short custom cable
compensation data.

• Set nidcpower.Session.lcr_short_custom_cable_compensation_enabled property
to True

When you call this method:

• The short compensation data is written to the onboard storage of the instrument. Onboard storage
can contain only the most recent set of data.

• Most NI-DCPower properties in the session are reset to their default values. Rewrite the values
of any properties you want to maintain.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].perform_lcr_short_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_short_custom_cable_compensation()

query_in_compliance

nidcpower.Session.query_in_compliance()

Queries the specified output device to determine if it is operating at the compliance limit.

The compliance limit is the current limit when the output method is set to DC_VOLTAGE. If the
output is operating at the compliance limit, the output reaches the current limit before the de-
sired voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction()method and
the nidcpower.Session.ConfigureCurrentLimit()method for more information about output
method and current limit, respectively.

38 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

The compliance limit is the voltage limit when the output method is set to DC_CURRENT. If the
output is operating at the compliance limit, the output reaches the voltage limit before the de-
sired current level. Refer to the nidcpower.Session.ConfigureOutputFunction()method and
the nidcpower.Session.ConfigureVoltageLimit()method for more information about output
method and voltage limit, respectively.

Related Topics:

Compliance

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Note: One or more of the referenced methods are not in the Python API for this driver.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_in_compliance()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_in_compliance()

Return type
bool

Returns
Returns whether the device channel is in compliance.

query_latched_output_cutoff_state

nidcpower.Session.query_latched_output_cutoff_state(output_cutoff_reason)
Discovers if an output cutoff limit was exceeded for the specified reason. When an output cutoff is
engaged, the output of the channel(s) is disconnected. If a limit was exceeded, the state is latched until
you clear it with the nidcpower.Session.clear_latched_output_cutoff_state() method
or the nidcpower.Session.reset() method.

outputCutoffReason specifies the conditions for which an output is disconnected.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_latched_output_cutoff_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

4.1. nidcpower module 39

https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.query_latched_output_cutoff_state()

Parameters
output_cutoff_reason (nidcpower.OutputCutoffReason) – Specifies which
output cutoff conditions to query.

ALL Any output cutoff condition was met
VOLTAGE_OUTPUT_HIGHThe output exceeded the high cutoff limit for voltage output
VOLTAGE_OUTPUT_LOWThe output fell below the low cutoff limit for voltage output
VOLTAGE_MEASURE_HIGHThe measured voltage exceeded the high cutoff limit for volt-

age output
VOLTAGE_MEASURE_LOWThe measured voltage fell below the low cutoff limit for volt-

age output
CURRENT_MEASURE_HIGHThe measured current exceeded the high cutoff limit for cur-

rent output
CURRENT_MEASURE_LOWThe measured current fell below the low cutoff limit for cur-

rent output
VOLTAGE_CHANGE_HIGHThe voltage slew rate increased beyond the positive change

cutoff for voltage output
VOLTAGE_CHANGE_LOWThe voltage slew rate decreased beyond the negative change

cutoff for voltage output
CURRENT_CHANGE_HIGHThe current slew rate increased beyond the positive change

cutoff for current output
CURRENT_CHANGE_LOWThe current slew rate decreased beyond the negative change

cutoff for current output
CURRENT_SATURATEDThe measured current saturates the current range

Return type
bool

Returns

Specifies whether an output cutoff has engaged.

True An output cutoff has engaged for the conditions in output cutoff reason.
False No output cutoff has engaged.

query_max_current_limit

nidcpower.Session.query_max_current_limit(voltage_level)
Queries the maximum current limit on a channel if the channel is set to the specified voltageLevel.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_max_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_current_limit()

40 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

Parameters
voltage_level (float) – Specifies the voltage level to use when calculating the max-
CurrentLimit.

Return type
float

Returns
Returns the maximum current limit that can be set with the specified voltageLevel.

query_max_voltage_level

nidcpower.Session.query_max_voltage_level(current_limit)
Queries the maximum voltage level on a channel if the channel is set to the specified currentLimit.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_max_voltage_level()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_voltage_level()

Parameters
current_limit (float) – Specifies the current limit to use when calculating the max-
VoltageLevel.

Return type
float

Returns
Returns the maximum voltage level that can be set on a channel with the specified
currentLimit.

query_min_current_limit

nidcpower.Session.query_min_current_limit(voltage_level)
Queries the minimum current limit on a channel if the channel is set to the specified voltageLevel.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_min_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_min_current_limit()

Parameters
voltage_level (float) – Specifies the voltage level to use when calculating the min-
CurrentLimit.

4.1. nidcpower module 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

Return type
float

Returns
Returns the minimum current limit that can be set on a channel with the specified volt-
ageLevel.

query_output_state

nidcpower.Session.query_output_state(output_state)
Queries the specified channel to determine if the channel is currently in the state specified by out-
putState.

Related Topics:

Compliance

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].query_output_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_output_state()

Parameters
output_state (nidcpower.OutputStates) – Specifies the output state of the chan-
nel that is being queried. Defined Values:

VOLTAGE The device maintains a constant voltage by adjusting the current.
CURRENT The device maintains a constant current by adjusting the voltage.

Return type
bool

Returns
Returns whether the device channel is in the specified output state.

42 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

NI-DCPower Python API Documentation, Release 1.4.8

read_current_temperature

nidcpower.Session.read_current_temperature()

Returns the current onboard temperature, in degrees Celsius, of the device.

Return type
float

Returns
Returns the onboard temperature, in degrees Celsius, of the device.

reset

nidcpower.Session.reset()

Resets the specified channel(s) to a known state. This method disables power generation, resets
session properties to their default values, commits the session properties, and leaves the session in the
Uncommitted state. Refer to the Programming States topic for more information about NI-DCPower
software states.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].reset()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.reset()

reset_device

nidcpower.Session.reset_device()

Resets the device to a known state. The method disables power generation, resets session properties
to their default values, clears errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the Uncommitted state. This method also
performs a hard reset on the device and driver software. This method has the same functionality as
using reset in Measurement & Automation Explorer. Refer to the Programming States topic for more
information about NI-DCPower software states.

This will also open the output relay on devices that have an output relay.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

4.1. nidcpower module 43

https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

reset_with_defaults

nidcpower.Session.reset_with_defaults()

Resets the device to a known state. This method disables power generation, resets session properties
to their default values, commits the session properties, and leaves the session in the Running state.
In addition to exhibiting the behavior of the nidcpower.Session.reset() method, this method
can assign user-defined default values for configurable properties from the IVI configuration.

self_cal

nidcpower.Session.self_cal()

Performs a self-calibration upon the specified channel(s).

This method disables the output, performs several internal calculations, and updates calibration
values. The updated calibration values are written to the device hardware if the nidcpower.
Session.self_calibration_persistence property is set to WRITE_TO_EEPROM . Refer to the
nidcpower.Session.self_calibration_persistence property topic for more information
about the settings for this property.

When calling nidcpower.Session.self_cal() with the PXIe-4162/4163, specify all channels
of your PXIe-4162/4163 with the channelName input. You cannot self-calibrate a subset of PXIe-
4162/4163 channels.

Refer to the Self-Calibration topic for more information about this method.

Related Topics:

Self-Calibration

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search
ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.self_cal()

44 Chapter 4. Bugs / Feature Requests

javascript:LaunchHelp('NI_DC_Power_Supplies_Help.chm::/programmingStates.html#running')

NI-DCPower Python API Documentation, Release 1.4.8

self_test

nidcpower.Session.self_test()

Performs the device self-test routine and returns the test result(s). Calling this method implicitly calls
the nidcpower.Session.reset() method.

When calling nidcpower.Session.self_test() with the PXIe-4162/4163, specify all channels
of your PXIe-4162/4163 with the channels input of nidcpower.Session.__init__(). You cannot
self test a subset of PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:

• code - failure code from driver

• message - status message from driver

Self-Test Code Description
0 Self test passed.
1 Self test failed.

send_software_edge_trigger

nidcpower.Session.send_software_edge_trigger(trigger)
Asserts the specified trigger. This method can override an external edge trigger.

Related Topics:

Triggers

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].send_software_edge_trigger()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.send_software_edge_trigger()

Parameters
trigger (nidcpower.SendSoftwareEdgeTriggerType) – Specifies which trigger
to assert. Defined Values:

START Asserts the Start trigger.
SOURCE Asserts the Source trigger.
MEASURE Asserts the Measure trigger.
SEQUENCE_ADVANCE Asserts the Sequence Advance trigger.
PULSE Asserts the Pulse trigger.
SHUTDOWN Asserts the Shutdown trigger.

4.1. nidcpower module 45

NI-DCPower Python API Documentation, Release 1.4.8

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

set_sequence

nidcpower.Session.set_sequence(values, source_delays)
Configures a series of voltage or current outputs and corresponding source delays. The source mode
must be set to Sequence for this method to take effect.

Refer to the Configuring the Source Unit topic in the NI DC Power Supplies and SMUs Help for more
information about how to configure your device.

Use this method in the Uncommitted or Committed programming states. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search
ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].set_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.set_sequence()

Parameters

• values (list of float) – Specifies the series of voltage levels or current levels,
depending on the configured output method. Valid values: The valid values for this
parameter are defined by the voltage level range or current level range.

• source_delays (list of float) – Specifies the source delay that follows the
configuration of each value in the sequence. Valid Values: The valid values are
between 0 and 167 seconds.

46 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

NI-DCPower Python API Documentation, Release 1.4.8

unlock

nidcpower.Session.unlock()

Releases a lock that you acquired on an device session using nidcpower.Session.lock(). Refer to
nidcpower.Session.unlock() for additional information on session locks.

wait_for_event

nidcpower.Session.wait_for_event(event_id, timeout=hightime.timedelta(seconds=10.0))
Waits until the specified channel(s) have generated the specified event.

The session monitors whether each type of event has occurred at least once since the last time this
method or the nidcpower.Session.initiate() method were called. If an event has only been
generated once and you call this method successively, the method times out. Individual events must
be generated between separate calls of this method.

Note: This method is not supported on all devices. For more information about supported devices,
search ni.com for Supported Methods by Device.

Tip: This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset, and
then call this method on the result.

Example: my_session.channels[...].wait_for_event()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.wait_for_event()

Parameters

• event_id (nidcpower.Event) – Specifies which event to wait for. Defined Val-
ues:

SOURCE_COMPLETE Waits for the Source Complete event.
MEASURE_COMPLETE Waits for the Measure Complete event.
SEQUENCE_ITERATION_COMPLETEWaits for the Sequence Iteration Complete

event.
SEQUENCE_ENGINE_DONE Waits for the Sequence Engine Done event.
PULSE_COMPLETE Waits for the Pulse Complete event.
READY_FOR_PULSE_TRIGGER Waits for the Ready for Pulse Trigger event.

Note: One or more of the referenced values are not in the Python API for this driver.
Enums that only define values, or represent True/False, have been removed.

• timeout (hightime.timedelta, datetime.timedelta, or float in
seconds) – Specifies the maximum time allowed for this method to complete, in
seconds. If the method does not complete within this time interval, NI-DCPower
returns an error.

4.1. nidcpower module 47

https://docs.python.org/3/library/datetime.html#datetime.timedelta

NI-DCPower Python API Documentation, Release 1.4.8

Note: When setting the timeout interval, ensure you take into account any triggers
so that the timeout interval is long enough for your application.

Properties

active_advanced_sequence

nidcpower.Session.active_advanced_sequence

Specifies the advanced sequence to configure or generate.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].active_advanced_sequence

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Active Advanced Sequence

• C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

nidcpower.Session.active_advanced_sequence_step

Specifies the advanced sequence step to configure.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

48 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].active_advanced_sequence_step

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence_step

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Active Advanced Sequence Step

• C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

nidcpower.Session.actual_power_allocation

Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.
Session.power_allocation_mode property is set to AUTOMATIC or MANUAL.

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

This property returns -1 when the nidcpower.Session.power_allocation_mode
property is set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].actual_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.actual_power_allocation

4.1. nidcpower module 49

NI-DCPower Python API Documentation, Release 1.4.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Actual Power Allocation

• C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

nidcpower.Session.aperture_time

Specifies the measurement aperture time for the channel configuration. Aperture time is specified in
the units set by the nidcpower.Session.aperture_time_units property. Refer to the Aperture
Time topic in the NI DC Power Supplies and SMUs Help for more information about how to configure
your measurements and for information about valid values. Default Value: 0.01666666 seconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Aperture Time

• C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

50 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

aperture_time_auto_mode

nidcpower.Session.aperture_time_auto_mode

Automatically optimizes the measurement aperture time according to the actual current range when
measurement autorange is enabled. Optimization accounts for power line frequency when the
nidcpower.Session.aperture_time_units property is set to POWER_LINE_CYCLES.

This property is applicable only if the nidcpower.Session.output_function property is set to
DC_VOLTAGE and the nidcpower.Session.autorange property is enabled.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].aperture_time_auto_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time_auto_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeAutoMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Aperture Time Auto Mode

• C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_AUTO_MODE

aperture_time_units

nidcpower.Session.aperture_time_units

Specifies the units of the nidcpower.Session.aperture_time property for the channel config-
uration. Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for more
information about how to configure your measurements and for information about valid values. De-
fault Value: SECONDS

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

4.1. nidcpower module 51

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Aperture Time Units

• C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

autorange

nidcpower.Session.autorange

Specifies whether the hardware automatically selects the best range to measure the signal.
Note the highest range the algorithm uses is dependent on the corresponding limit range prop-
erty. The algorithm the hardware uses can be controlled using the nidcpower.Session.
autorange_aperture_time_mode property.

Note: Autoranging begins at module startup and remains active until the module is reconfigured or
reset. This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

52 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Measurement:Autorange

• C Attribute: NIDCPOWER_ATTR_AUTORANGE

autorange_aperture_time_mode

nidcpower.Session.autorange_aperture_time_mode

Specifies whether the aperture time used for the measurement autorange algo-
rithm is determined automatically or customized using the nidcpower.Session.
autorange_minimum_aperture_time property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_aperture_time_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_aperture_time_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeApertureTimeMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Aperture Time Mode

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_APERTURE_TIME_MODE

autorange_behavior

nidcpower.Session.autorange_behavior

Specifies the algorithm the hardware uses for measurement autoranging.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

4.1. nidcpower module 53

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].autorange_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Behavior

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_BEHAVIOR

autorange_maximum_delay_after_range_change

nidcpower.Session.autorange_maximum_delay_after_range_change

Balances between settling time and maximum measurement time by specifying the maximum time
delay between when a range change occurs and when measurements resume. Valid Values: The
minimum and maximum values of this property are hardware-dependent. PXIe-4135/4136/4137: 0
to 9 seconds PXIe-4138/4139: 0 to 9 seconds PXIe-4147: 0 to 9 seconds PXIe-4162/4163: 0 to 0.1
seconds.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_maximum_delay_after_range_change

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_maximum_delay_after_range_change

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

54 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Measurement:Advanced:Autorange Maximum Delay After Range
Change

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MAXIMUM_DELAY_AFTER_RANGE_CHANGE

autorange_minimum_aperture_time

nidcpower.Session.autorange_minimum_aperture_time

Specifies the measurement autorange aperture time used for the measurement autorange al-
gorithm. The aperture time is specified in the units set by the nidcpower.Session.
autorange_minimum_aperture_time_units property. This value will typically be smaller than
the aperture time used for measurements.

Note: For smaller ranges, the value is scaled up to account for noise. The factor used to scale the
value is derived from the module capabilities. This property is not supported on all devices. For
more information about supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME

4.1. nidcpower module 55

NI-DCPower Python API Documentation, Release 1.4.8

autorange_minimum_aperture_time_units

nidcpower.Session.autorange_minimum_aperture_time_units

Specifies the units of the nidcpower.Session.autorange_minimum_aperture_time property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time_units

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ApertureTimeUnits
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time Units

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME_UNITS

autorange_minimum_current_range

nidcpower.Session.autorange_minimum_current_range

Specifies the lowest range used during measurement autoranging. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and minimize frequent and
unpredictable range changes for noisy signals.

Note: The maximum range used is the range that includes the value specified in the com-
pliance limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.Session.
output_function. This property is not supported on all devices. For more information about
supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_current_range

56 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Current Range

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_CURRENT_RANGE

autorange_minimum_voltage_range

nidcpower.Session.autorange_minimum_voltage_range

Specifies the lowest range used during measurement autoranging. The maximum range used is range
that includes the value specified in the compliance limit property. Limiting the lowest range used
during autoranging can improve the speed of the autoranging algorithm and/or minimize thrashing
between ranges for noisy signals.

Note: The maximum range used is the range that includes the value specified in the com-
pliance limit property, nidcpower.Session.voltage_limit_range property or nidcpower.
Session.current_limit_range property, depending on the selected nidcpower.Session.
output_function. This property is not supported on all devices. For more information about
supported devices, search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 57

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Minimum Voltage Range

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_VOLTAGE_RANGE

autorange_threshold_mode

nidcpower.Session.autorange_threshold_mode

Specifies thresholds used during autoranging to determine when range changing occurs.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_threshold_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_threshold_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutorangeThresholdMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Autorange Threshold Mode

• C Attribute: NIDCPOWER_ATTR_AUTORANGE_THRESHOLD_MODE

auto_zero

nidcpower.Session.auto_zero

Specifies the auto-zero method to use on the device. Refer to the NI PXI-4132 Measurement Con-
figuration and Timing and Auto Zero topics for more information about how to configure your mea-
surements. Default Value: The default value for the NI PXI-4132 is ON. The default value for all
other devices is OFF, which is the only supported value for these devices.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

58 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].auto_zero

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.auto_zero

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.AutoZero
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Auto Zero

• C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

nidcpower.Session.auxiliary_power_source_available

Indicates whether an auxiliary power source is connected to the device. A value of False may indicate
that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in the
NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use property
to retrieve this information.

Note: This property does not necessarily indicate if the device is using the auxiliary

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Auxiliary Power Source Available

• C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

4.1. nidcpower module 59

NI-DCPower Python API Documentation, Release 1.4.8

cable_length

nidcpower.Session.cable_length

Specifies how to apply cable compensation data for instruments that support LCR functionality. Sup-
ported instruments use cable compensation for the following operations:

SMU mode: to stabilize DC current sourcing in the two smallest current ranges. LCR mode: to
compensate for the effects of cabling on LCR measurements.

For NI standard options, select the length of your NI cable to apply compensation data for a typical
cable of that type. For custom options, choose the source of the custom cable compensation data.
You must then generate the custom cable compensation data.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].cable_length

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.cable_length

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.CableLength
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Device Specific:LCR:Cable Length

• C Attribute: NIDCPOWER_ATTR_CABLE_LENGTH

channel_count

nidcpower.Session.channel_count

Indicates the number of channels that NI-DCPower supports for the instrument that was chosen when
the current session was opened. For channel-based properties, the IVI engine maintains a separate
cache value for each channel.

The following table lists the characteristics of this property.

60 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

• C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

compliance_limit_symmetry

nidcpower.Session.compliance_limit_symmetry

Specifies whether compliance limits for current generation and voltage generation for the device are
applied symmetrically about 0 V and 0 A or asymmetrically with respect to 0 V and 0 A. When set
to SYMMETRIC, voltage limits and current limits are set using a single property with a positive value.
The resulting range is bounded by this positive value and its opposite. When set to ASYMMETRIC,
you must separately set a limit high and a limit low using distinct properties. For asymmetric limits,
the range bounded by the limit high and limit low must include zero. Default Value: Symmetric
Related Topics: Compliance; Ranges; Changing Ranges; Overranging

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].compliance_limit_symmetry

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.compliance_limit_symmetry

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ComplianceLimitSymmetry
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Compliance Limit Symmetry

• C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

4.1. nidcpower module 61

NI-DCPower Python API Documentation, Release 1.4.8

conduction_voltage_mode

nidcpower.Session.conduction_voltage_mode

Specifies whether the conduction voltage feature is enabled on the specified channel(s).

When the conduction voltage feature is enabled,

• The instrument will not begin sinking on the specified channel(s) until the volt-
age at the input of the specified channel(s) rises above nidcpower.Session.
conduction_voltage_on_threshold

• The instrument will stop sinking if the voltage at the input of the specified channel(s) falls
below nidcpower.Session.conduction_voltage_off_threshold .

When the conduction voltage feature is disabled,

• The instrument will start sinking regardless of the voltage at the input of the specified chan-
nel(s).

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.conduction_voltage_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.ConductionVoltageMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Conduction Voltage:Mode

• C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_MODE

62 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

conduction_voltage_off_threshold

nidcpower.Session.conduction_voltage_off_threshold

Specifies the minimum voltage, in volts, at the input of the specified channel(s) below which the
instrument stops sinking on the specified channel(s) when the conduction voltage feature is enabled.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_off_threshold

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.conduction_voltage_off_threshold

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Conduction Voltage:Off Threshold

• C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_OFF_THRESHOLD

conduction_voltage_on_threshold

nidcpower.Session.conduction_voltage_on_threshold

Specifies the required minimum voltage, in volts, at the input of the specified channel(s) before the
instrument starts sinking on the specified channel(s) when the conduction voltage feature is enabled.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_on_threshold

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 63

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.conduction_voltage_on_threshold

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Conduction Voltage:On Threshold

• C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_ON_THRESHOLD

current_compensation_frequency

nidcpower.Session.current_compensation_frequency

The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Current mode. Default Value: Determined by the value of the NORMAL setting of the nidcpower.
Session.transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_compensation_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Compensation Fre-
quency

• C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

64 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

current_gain_bandwidth

nidcpower.Session.current_gain_bandwidth

The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles
and zeroes. This property takes effect when the channel is in Constant Current mode. Default Value:
Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response
property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Gain Bandwidth

• C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

nidcpower.Session.current_level

Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to
DC_CURRENT.

Valid Values: The valid values for this property are defined by the values to which the nidcpower.
Session.current_level_range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the chan-
nel.

4.1. nidcpower module 65

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

nidcpower.Session.current_level_autorange

Specifies whether NI-DCPower automatically selects the current level range based on the desired
current level for the specified channels. If you set this property to ON, NI-DCPower ignores any
changes you make to the nidcpower.Session.current_level_range property. If you change
the nidcpower.Session.current_level_autorange property from ON to OFF, NI-DCPower re-
tains the last value the nidcpower.Session.current_level_range property was set to (or the
default value if the property was never set) and uses that value as the current level range. Query
the nidcpower.Session.current_level_range property by using the nidcpower.Session.
_get_attribute_vi_int32() method for information about which range NI-DCPower automati-
cally selects. The nidcpower.Session.current_level_autorange property is applicable only
if the nidcpower.Session.output_function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_autorange

The following table lists the characteristics of this property.

66 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Autorange

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_falling_slew_rate

nidcpower.Session.current_level_falling_slew_rate

Specifies the rate of decrease, in amps per microsecond, to apply to the absolute magnitude of the
current level of the specified channel(s). This property is applicable only if you set the nidcpower.
Session.output_function property to DC_CURRENT.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_falling_slew_rate

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_falling_slew_rate

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Slew Rate:Falling

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_FALLING_SLEW_RATE

4.1. nidcpower module 67

NI-DCPower Python API Documentation, Release 1.4.8

current_level_range

nidcpower.Session.current_level_range

Specifies the current level range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the current level. Use the nidcpower.Session.
current_level_autorange property to enable automatic selection of the current level range.
The nidcpower.Session.current_level_range property is applicable only if the nidcpower.
Session.output_function property is set to DC_CURRENT.

For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified current level range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Range

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_level_rising_slew_rate

nidcpower.Session.current_level_rising_slew_rate

Specifies the rate of increase, in amps per microsecond, to apply to the absolute magnitude of the
current level of the specified channel(s). This property is applicable only if you set the nidcpower.
Session.output_function property to DC_CURRENT.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

68 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].current_level_rising_slew_rate

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_rising_slew_rate

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Current Level Slew Rate:Rising

• C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RISING_SLEW_RATE

current_limit

nidcpower.Session.current_limit

Specifies the current limit, in amps, that the output cannot exceed when generating the desired
voltage level on the specified channel(s). This property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE and the nidcpower.Session.
compliance_limit_symmetry property is set to SYMMETRIC.

Valid Values: The valid values for this property are defined by the values to which nidcpower.
Session.current_limit_range property is set.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the chan-
nel.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit

The following table lists the characteristics of this property.

4.1. nidcpower module 69

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

current_limit_autorange

nidcpower.Session.current_limit_autorange

Specifies whether NI-DCPower automatically selects the current limit range based on the de-
sired current limit for the specified channel(s). If you set this property to ON, NI-DCPower
ignores any changes you make to the nidcpower.Session.current_limit_range prop-
erty. If you change this property from ON to OFF, NI-DCPower retains the last value
the nidcpower.Session.current_limit_range property was set to (or the default value
if the property was never set) and uses that value as the current limit range. Query the
nidcpower.Session.current_limit_range property by using the nidcpower.Session.
_get_attribute_vi_int32() method for information about which range NI-DCPower automati-
cally selects. The nidcpower.Session.current_limit_autorange property is applicable only
if the nidcpower.Session.output_function property is set to DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Autorange

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

70 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

current_limit_behavior

nidcpower.Session.current_limit_behavior

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.CurrentLimitBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

nidcpower.Session.current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating the de-
sired voltage on the specified channel(s). This property is applicable only if the nidcpower.
Session.compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_VOLTAGE. You must also specify a nidcpower.
Session.current_limit_low to complete the asymmetric range. Valid Values: [1% of
nidcpower.Session.current_limit_range, nidcpower.Session.current_limit_range]
The range bounded by the limit high and limit low must include zero. Default Value: Search ni.com
for Supported Properties by Device for the default value by device. Related Topics: Ranges; Chang-
ing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 71

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit High

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

nidcpower.Session.current_limit_low

Specifies the minimum current, in amps, that the output can produce when generating the de-
sired voltage on the specified channel(s). This property is applicable only if the nidcpower.
Session.compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_VOLTAGE. You must also specify a nidcpower.
Session.current_limit_high to complete the asymmetric range. Valid Values: [-nidcpower.
Session.current_limit_range, -1% of nidcpower.Session.current_limit_range] The
range bounded by the limit high and limit low must include zero. Default Value: Search ni.com for
Supported Properties by Device for the default value by device. Related Topics: Ranges; Changing
Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

72 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Low

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

current_limit_range

nidcpower.Session.current_limit_range

Specifies the current limit range, in amps, for the specified channel(s). The range defines
the valid values to which you can set the current limit. Use the nidcpower.Session.
current_limit_autorange property to enable automatic selection of the current limit range.
The nidcpower.Session.current_limit_range property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE.

For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the chan-
nel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Current Limit Range

• C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

4.1. nidcpower module 73

NI-DCPower Python API Documentation, Release 1.4.8

current_pole_zero_ratio

nidcpower.Session.current_pole_zero_ratio

The ratio of the pole frequency to the zero frequency when the channel is in Constant Current
mode. Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Current:Pole-Zero Ratio

• C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

nidcpower.Session.dc_noise_rejection

Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141
DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise
Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise
rejection. Default Value: NORMAL

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].dc_noise_rejection

74 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.dc_noise_rejection

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.DCNoiseRejection
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:DC Noise Rejection

• C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

nidcpower.Session.digital_edge_measure_trigger_input_terminal

Specifies the input terminal for the Measure trigger. This property is used only when the nidcpower.
Session.measure_trigger_type property is set to DIGITAL_EDGE. for this property. You can
specify any valid input terminal for this property. Valid terminals are listed in Measurement & Au-
tomation Explorer under the Device Routes tab. Input terminals can be specified in one of two ways.
If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the
fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
The input terminal can also be a terminal from another device. For example, you can set the input
terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_measure_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_measure_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 75

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge_pulse_trigger_input_terminal

nidcpower.Session.digital_edge_pulse_trigger_input_terminal

Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.
Session.pulse_trigger_type property is set to digital edge. You can specify any valid input
terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under
the Device Routes tab. Input terminals can be specified in one of two ways. If the device is named
Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal
name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can
also be a terminal from another device. For example, you can set the input terminal on Dev1 to be
/Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_pulse_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_pulse_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

76 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

digital_edge_sequence_advance_trigger_input_terminal

nidcpower.Session.digital_edge_sequence_advance_trigger_input_terminal

Specifies the input terminal for the Sequence Advance trigger. Use this property only when the
nidcpower.Session.sequence_advance_trigger_type property is set to DIGITAL_EDGE. the
NI DC Power Supplies and SMUs Help for information about supported devices. You can specify
any valid input terminal for this property. Valid terminals are listed in Measurement & Automation
Explorer under the Device Routes tab. Input terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The
input terminal can also be a terminal from another device. For example, you can set the input terminal
on Dev1 to be /Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_sequence_advance_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_sequence_advance_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMINAL

digital_edge_shutdown_trigger_input_terminal

nidcpower.Session.digital_edge_shutdown_trigger_input_terminal

Specifies the input terminal for the Shutdown trigger. This property is used only when the
nidcpower.Session.shutdown_trigger_type property is set to digital edge. You can specify
any valid input terminal for this property. Valid terminals are listed in Measurement & Automation
Explorer under the Device Routes tab. Input terminals can be specified in one of two ways. If the
device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully
qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The
input terminal can also be a terminal from another device. For example, you can set the input terminal
on Dev1 to be /Dev2/SourceCompleteEvent.

4.1. nidcpower module 77

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_shutdown_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_shutdown_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Shutdown Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SHUTDOWN_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

nidcpower.Session.digital_edge_source_trigger_input_terminal

Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.
Session.source_trigger_type property is set to DIGITAL_EDGE. You can specify any valid
input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer
under the Device Routes tab. Input terminals can be specified in one of two ways. If the device is
named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified
terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input ter-
minal can also be a terminal from another device. For example, you can set the input terminal on
Dev1 to be /Dev2/SourceCompleteEvent.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_source_trigger_input_terminal

78 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_source_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

digital_edge_start_trigger_input_terminal

nidcpower.Session.digital_edge_start_trigger_input_terminal

Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.
Session.start_trigger_type property is set to DIGITAL_EDGE. You can specify any valid input
terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under
the Device Routes tab. Input terminals can be specified in one of two ways. If the device is named
Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal
name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can
also be a terminal from another device. For example, you can set the input terminal on Dev1 to be
/Dev2/SourceCompleteEvent.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_start_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_start_trigger_input_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 79

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal

• C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

nidcpower.Session.driver_setup

Indicates the Driver Setup string that you specified when initializing the driver. Some cases exist
where you must specify the instrument driver options at initialization time. An example of this case
is specifying a particular device model from among a family of devices that the driver supports. This
property is useful when simulating a device. You can specify the driver-specific options through
the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__()
method or through the IVI Configuration Utility. You can specify driver-specific options through
the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__()
method. If you do not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

• C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

nidcpower.Session.exported_measure_trigger_output_terminal

Specifies the output terminal for exporting the Measure trigger. Refer to the Device Routes tab in
Measurement & Automation Explorer for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_measure_trigger_output_terminal

80 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_measure_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_MEASURE_TRIGGER_OUTPUT_TERMINAL

exported_pulse_trigger_output_terminal

nidcpower.Session.exported_pulse_trigger_output_terminal

Specifies the output terminal for exporting the Pulse trigger. Refer to the Device Routes tab in Mea-
surement & Automation Explorer for a list of the terminals available on your device. Output terminals
can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_pulse_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_pulse_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

4.1. nidcpower module 81

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

nidcpower.Session.exported_sequence_advance_trigger_output_terminal

Specifies the output terminal for exporting the Sequence Advance trigger. Refer to the Device Routes
tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal
is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_sequence_advance_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_sequence_advance_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

nidcpower.Session.exported_source_trigger_output_terminal

Specifies the output terminal for exporting the Source trigger. Refer to the Device Routes tab in MAX
for a list of the terminals available on your device. Output terminals can be specified in one of two
ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with
the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

82 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_source_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_source_trigger_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Source Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

nidcpower.Session.exported_start_trigger_output_terminal

Specifies the output terminal for exporting the Start trigger. Refer to the Device Routes tab in Mea-
surement & Automation Explorer (MAX) for a list of the terminals available on your device. Output
terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is
PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0,
or with the shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_start_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_start_trigger_output_terminal

The following table lists the characteristics of this property.

4.1. nidcpower module 83

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Export Output Terminal

• C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

nidcpower.Session.fetch_backlog

Returns the number of measurements acquired that have not been fetched yet.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].fetch_backlog

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.fetch_backlog

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Fetch Backlog

• C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

84 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

instrument_firmware_revision

nidcpower.Session.instrument_firmware_revision

Contains the firmware revision information for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

nidcpower.Session.instrument_manufacturer

Contains the name of the manufacturer for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_manufacturer

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_manufacturer

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

4.1. nidcpower module 85

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_mode

nidcpower.Session.instrument_mode

Specifies the mode of operation for an instrument channel for instruments that support multiple
modes.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].instrument_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.InstrumentMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Instrument Mode

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODE

instrument_model

nidcpower.Session.instrument_model

Contains the model number or name of the device that you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].instrument_model

86 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_model

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

• C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODEL

interlock_input_open

nidcpower.Session.interlock_input_open

Indicates whether the safety interlock circuit is open. Refer to the Safety Interlock topic in the NI
DC Power Supplies and SMUs Help for more information about the safety interlock circuit. about
supported devices.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].interlock_input_open

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.interlock_input_open

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Interlock Input Open

4.1. nidcpower module 87

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

nidcpower.Session.io_resource_descriptor

Indicates the resource descriptor NI-DCPower uses to identify the physical device. If you initialize
NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to
the entry in the IVI Configuration utility. If you initialize NI-DCPower with the resource descriptor,
this property contains that value.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource De-
scriptor

• C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

isolation_state

nidcpower.Session.isolation_state

Defines whether the channel is isolated.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].isolation_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.isolation_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

88 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Isolation State

• C Attribute: NIDCPOWER_ATTR_ISOLATION_STATE

lcr_actual_load_reactance

nidcpower.Session.lcr_actual_load_reactance

Specifies the actual reactance, in ohms, of the load used for load LCR compensation. This prop-
erty applies when nidcpower.Session.lcr_open_short_load_compensation_data_source
is set to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_actual_load_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_actual_load_reactance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:LCR Actual Load Reactance

• C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_REACTANCE

lcr_actual_load_resistance

nidcpower.Session.lcr_actual_load_resistance

Specifies the actual resistance, in ohms, of the load used for load LCR compensation. This prop-
erty applies when nidcpower.Session.lcr_open_short_load_compensation_data_source
is set to AS_DEFINED.

4.1. nidcpower module 89

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_actual_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_actual_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:LCR Actual Load Resistance

• C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_RESISTANCE

lcr_ac_dither_enabled

nidcpower.Session.lcr_ac_dither_enabled

Specifies whether dithering is enabled during LCR measurements. Dithering adds out-of-band noise
to improve measurements of small voltage and current signals.

Note: Hardware is only warranted to meet its accuracy specs with dither enabled. You can disable
dither if the added noise interferes with your device-under-test.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_ac_dither_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_ac_dither_enabled

The following table lists the characteristics of this property.

90 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Advanced:Dither Enabled

• C Attribute: NIDCPOWER_ATTR_LCR_AC_DITHER_ENABLED

lcr_ac_electrical_cable_length_delay

nidcpower.Session.lcr_ac_electrical_cable_length_delay

Specifies the one-way electrical length delay of the cable, in seconds. The default value depends on
nidcpower.Session.cable_length .

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_ac_electrical_cable_length_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_ac_electrical_cable_length_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:LCR AC Electrical Cable Length Delay

• C Attribute: NIDCPOWER_ATTR_LCR_AC_ELECTRICAL_CABLE_LENGTH_DELAY

4.1. nidcpower module 91

NI-DCPower Python API Documentation, Release 1.4.8

lcr_automatic_level_control

nidcpower.Session.lcr_automatic_level_control

Specifies whether the channel actively attempts to maintain a constant test voltage or current across
the DUT for LCR measurements. The use of voltage or current depends on the test signal you con-
figure with the nidcpower.Session.lcr_stimulus_function property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_automatic_level_control

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_automatic_level_control

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Automatic Level Control

• C Attribute: NIDCPOWER_ATTR_LCR_AUTOMATIC_LEVEL_CONTROL

lcr_current_amplitude

nidcpower.Session.lcr_current_amplitude

Specifies the amplitude, in amps RMS, of the AC current test signal applied to the DUT for LCR
measurements. This property applies when the nidcpower.Session.lcr_stimulus_function
property is set to CURRENT.

Valid Values: 7.08e-9 A RMS to 0.707 A RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for your
instrument for more information.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

92 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_current_amplitude

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_current_amplitude

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Current Amplitude

• C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_AMPLITUDE

lcr_current_range

nidcpower.Session.lcr_current_range

Specifies the current range, in amps RMS, for the specified channel(s). The range defines the valid
values to which you can set the nidcpower.Session.lcr_current_amplitude. For valid ranges,
refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 93

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Advanced:Current Range

• C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_RANGE

lcr_custom_measurement_time

nidcpower.Session.lcr_custom_measurement_time

Specifies the LCR measurement aperture time for a channel, in seconds, when the nidcpower.
Session.lcr_measurement_time property is set to CUSTOM .

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_custom_measurement_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_custom_measurement_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Custom Measurement Time

• C Attribute: NIDCPOWER_ATTR_LCR_CUSTOM_MEASUREMENT_TIME

lcr_dc_bias_automatic_level_control

nidcpower.Session.lcr_dc_bias_automatic_level_control

Specifies whether the channel actively maintains a constant DC bias voltage or current across the
DUT for LCR measurements. To use this property, you must configure a DC bias by 1) select-
ing an nidcpower.Session.lcr_dc_bias_source and 2) depending on the DC bias source you
choose, setting either the nidcpower.Session.lcr_dc_bias_voltage_level or nidcpower.
Session.lcr_dc_bias_current_level.

94 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_automatic_level_control

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_automatic_level_control

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Automatic Level Control

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_AUTOMATIC_LEVEL_CONTROL

lcr_dc_bias_current_level

nidcpower.Session.lcr_dc_bias_current_level

Specifies the DC bias current level, in amps, when the nidcpower.Session.
lcr_dc_bias_source property is set to CURRENT.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_current_level

The following table lists the characteristics of this property.

4.1. nidcpower module 95

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Current Level

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_LEVEL

lcr_dc_bias_current_range

nidcpower.Session.lcr_dc_bias_current_range

Specifies the DC Bias current range, in amps, for the specified channel(s). The range defines the
valid values to which you can set the nidcpower.Session.lcr_dc_bias_current_level. For
valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_current_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Advanced:Current Range

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_RANGE

96 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

lcr_dc_bias_source

nidcpower.Session.lcr_dc_bias_source

Specifies how to apply DC bias for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRDCBiasSource
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Source

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_SOURCE

lcr_dc_bias_transient_response

nidcpower.Session.lcr_dc_bias_transient_response

For instruments in LCR mode, determines whether NI-DCPower automatically calculates and applies
the transient response values for DC bias or applies the transient response you set manually.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Related Topics: Transient Response

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_transient_response

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 97

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.lcr_dc_bias_transient_response

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRDCBiasTransientResponse
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Advanced:Transient Response

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_TRANSIENT_RESPONSE

lcr_dc_bias_voltage_level

nidcpower.Session.lcr_dc_bias_voltage_level

Specifies the DC bias voltage level, in volts, when the nidcpower.Session.
lcr_dc_bias_source property is set to VOLTAGE.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Voltage Level

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_LEVEL

98 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

lcr_dc_bias_voltage_range

nidcpower.Session.lcr_dc_bias_voltage_range

Specifies the DC Bias voltage range, in volts, for the specified channel(s). The range defines the valid
values to which you can set the nidcpower.Session.lcr_dc_bias_voltage_level. For valid
ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:DC Bias:Advanced:Voltage Range

• C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_RANGE

lcr_frequency

nidcpower.Session.lcr_frequency

Specifies the frequency of the AC test signal applied to the DUT for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 99

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.lcr_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Frequency

• C Attribute: NIDCPOWER_ATTR_LCR_FREQUENCY

lcr_impedance_auto_range

nidcpower.Session.lcr_impedance_auto_range

Defines whether an instrument in LCR mode automatically selects the best impedance range for each
given LCR measurement.

Impedance autoranging may be enabled only when both:

• The nidcpower.Session.source_mode property is set to SINGLE_POINT

• nidcpower.Session.measure_when is set to a value other than ON_MEASURE_TRIGGER

You can read nidcpower.Session.lcr_impedance_range back after a measurement to deter-
mine the actual range used.

When enabled, impedance autoranging overrides impedance range settings you configure manually
with any other properties.

When using a load with unknown impedance, you can set this property to ON to determine
the correct impedance range for the load. When you know the load impedance, you can
achieve faster performance by setting this property to OFF and setting nidcpower.Session.
lcr_impedance_range_source to LOAD_CONFIGURATION.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_auto_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_auto_range

100 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Impedance Autorange

• C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_AUTO_RANGE

lcr_impedance_range

nidcpower.Session.lcr_impedance_range

Specifies the impedance range the channel uses for LCR measurements.

Valid Values: 0 ohms to +inf ohms

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Impedance Range

• C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE

4.1. nidcpower module 101

NI-DCPower Python API Documentation, Release 1.4.8

lcr_impedance_range_source

nidcpower.Session.lcr_impedance_range_source

Specifies how the impedance range for LCR measurements is determined.

“nidcpower.Session.LCR_IMPEDANCE_AUTORANGE overrides any impedance range determined
by this property.

“

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Note: One or more of the referenced properties are not in the Python API for this driver.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_range_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_range_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRImpedanceRangeSource
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Advanced:Impedance Range Source

• C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE_SOURCE

lcr_load_capacitance

nidcpower.Session.lcr_load_capacitance

Specifies the load capacitance, in farads and assuming a series model, of the DUT in order to compute
the impedance range when the nidcpower.Session.lcr_impedance_range_source property is
set to LOAD_CONFIGURATION.

Valid values: (0 farads, +inf farads) 0 is a special value that signifies +inf farads.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

102 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_capacitance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_capacitance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Advanced:Load Capacitance

• C Attribute: NIDCPOWER_ATTR_LCR_LOAD_CAPACITANCE

lcr_load_compensation_enabled

nidcpower.Session.lcr_load_compensation_enabled

Specifies whether to apply load LCR compensation data to LCR measurements. Both the
nidcpower.Session.lcr_open_compensation_enabled and nidcpower.Session.
lcr_short_compensation_enabled properties must be set to True in order to set this property
to True.

Use the nidcpower.Session.lcr_open_short_load_compensation_data_source property
to define where the load compensation data that is applied to LCR measurements comes from.

Note: Load compensation data are applied only for those specific frequencies you define with
nidcpower.Session.perform_lcr_load_compensation(); load compensation is not interpo-
lated from the specific frequencies you define and applied to other frequencies.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 103

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.lcr_load_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Load:Enabled

• C Attribute: NIDCPOWER_ATTR_LCR_LOAD_COMPENSATION_ENABLED

lcr_load_inductance

nidcpower.Session.lcr_load_inductance

Specifies the load inductance, in henrys and assuming a series model, of the DUT in order to compute
the impedance range when the nidcpower.Session.lcr_impedance_range_source property is
set to LOAD_CONFIGURATION.

Valid values: [0 henrys, +inf henrys)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_inductance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_inductance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Advanced:Load Inductance

104 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_LCR_LOAD_INDUCTANCE

lcr_load_resistance

nidcpower.Session.lcr_load_resistance

Specifies the load resistance, in ohms and assuming a series model, of the DUT in order to compute
the impedance range when the nidcpower.Session.lcr_impedance_range_source property is
set to LOAD_CONFIGURATION.

Valid values: [0 ohms, +inf ohms)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Impedance Range:Advanced:Load Resistance

• C Attribute: NIDCPOWER_ATTR_LCR_LOAD_RESISTANCE

lcr_measured_load_reactance

nidcpower.Session.lcr_measured_load_reactance

Specifies the reactance, in ohms, of the load used for load LCR compensation as
measured by the instrument. This property applies when nidcpower.Session.
lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

4.1. nidcpower module 105

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measured_load_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measured_load_reactance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Load:Measured Reactance

• C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_REACTANCE

lcr_measured_load_resistance

nidcpower.Session.lcr_measured_load_resistance

Specifies the resistance, in ohms, of the load used for load LCR compensation as
measured by the instrument. This property applies when nidcpower.Session.
lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measured_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measured_load_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

106 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Load:Measured Resistance

• C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_RESISTANCE

lcr_measurement_time

nidcpower.Session.lcr_measurement_time

Selects a general aperture time profile for LCR measurements. The actual duration of each profile
depends on the frequency of the LCR test signal.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measurement_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measurement_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRMeasurementTime
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Measurement Time

• C Attribute: NIDCPOWER_ATTR_LCR_MEASUREMENT_TIME

lcr_open_compensation_enabled

nidcpower.Session.lcr_open_compensation_enabled

Specifies whether to apply open LCR compensation data to LCR measurements. Use the
nidcpower.Session.lcr_open_short_load_compensation_data_source property to define
where the open compensation data that is applied to LCR measurements comes from.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

4.1. nidcpower module 107

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Open:Enabled

• C Attribute: NIDCPOWER_ATTR_LCR_OPEN_COMPENSATION_ENABLED

lcr_open_conductance

nidcpower.Session.lcr_open_conductance

Specifies the conductance, in siemens, of the circuit used for open LCR compensation. This prop-
erty applies when nidcpower.Session.lcr_open_short_load_compensation_data_source
is set to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_conductance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_conductance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

108 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Open:Conductance

• C Attribute: NIDCPOWER_ATTR_LCR_OPEN_CONDUCTANCE

lcr_open_short_load_compensation_data_source

nidcpower.Session.lcr_open_short_load_compensation_data_source

Specifies the source of the LCR compensation data NI-DCPower applies to LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_short_load_compensation_data_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_short_load_compensation_data_source

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCROpenShortLoadCompensationDataSource
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:LCR Open/Short/Load Compensation Data
Source

• C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SHORT_LOAD_COMPENSATION_DATA_SOURCE

lcr_open_susceptance

nidcpower.Session.lcr_open_susceptance

Specifies the susceptance, in siemens, of the circuit used for open LCR compensation. This prop-
erty applies when nidcpower.Session.lcr_open_short_load_compensation_data_source
is set to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

4.1. nidcpower module 109

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_susceptance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_susceptance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Open:Susceptance

• C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SUSCEPTANCE

lcr_short_compensation_enabled

nidcpower.Session.lcr_short_compensation_enabled

Specifies whether to apply short LCR compensation data to LCR measurements. Use the
nidcpower.Session.lcr_open_short_load_compensation_data_source property to define
where the short compensation data that is applied to LCR measurements comes from.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

110 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Short:Enabled

• C Attribute: NIDCPOWER_ATTR_LCR_SHORT_COMPENSATION_ENABLED

lcr_short_custom_cable_compensation_enabled

nidcpower.Session.lcr_short_custom_cable_compensation_enabled

Defines how to apply short custom cable compensation in LCR mode when nidcpower.Session.
cable_length property is set to CUSTOM_ONBOARD_STORAGE or CUSTOM_AS_CONFIGURED.

LCR custom cable compensation uses compensation data for both an open and short configu-
ration. For open custom cable compensation, you must supply your own data from a call to
nidcpower.Session.perform_lcr_open_custom_cable_compensation(). For short cus-
tom cable compensation, you can supply your own data from a call to nidcpower.Session.
perform_lcr_short_custom_cable_compensation() or NI-DCPower can apply a default set
of short compensation data.

False Uses default short compensation data.
True Uses short custom cable compensation data generated by nidcpower.Session.

perform_lcr_short_custom_cable_compensation().

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_custom_cable_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_custom_cable_compensation_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:LCR Short Custom Cable Compensation En-
abled

• C Attribute: NIDCPOWER_ATTR_LCR_SHORT_CUSTOM_CABLE_COMPENSATION_ENABLED

4.1. nidcpower module 111

NI-DCPower Python API Documentation, Release 1.4.8

lcr_short_reactance

nidcpower.Session.lcr_short_reactance

Specifies the reactance, in ohms, of the circuit used for short LCR compensation. This property ap-
plies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set
to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_reactance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Short:Reactance

• C Attribute: NIDCPOWER_ATTR_LCR_SHORT_REACTANCE

lcr_short_resistance

nidcpower.Session.lcr_short_resistance

Specifies the resistance, in ohms, of the circuit used for short LCR compensation. This property ap-
plies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set
to AS_DEFINED.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

112 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.lcr_short_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Compensation:Short:Resistance

• C Attribute: NIDCPOWER_ATTR_LCR_SHORT_RESISTANCE

lcr_source_aperture_time

nidcpower.Session.lcr_source_aperture_time

Specifies the LCR source aperture time for a channel, in seconds.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_source_aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_source_aperture_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Advanced:Source Aperture Time

• C Attribute: NIDCPOWER_ATTR_LCR_SOURCE_APERTURE_TIME

4.1. nidcpower module 113

NI-DCPower Python API Documentation, Release 1.4.8

lcr_source_delay_mode

nidcpower.Session.lcr_source_delay_mode

For instruments in LCR mode, determines whether NI-DCPower automatically calculates and applies
the source delay or applies a source delay you set manually.

You can return the source delay duration for either option by reading nidcpower.Session.
source_delay.

When you use this property to manually set the source delay, it is possible to set source delays short
enough to unbalance the bridge and affect measurement accuracy. LCR measurement methods report
whether the bridge is unbalanced.

Default Value: AUTOMATIC

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_source_delay_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_source_delay_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRSourceDelayMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:Source Delay Mode

• C Attribute: NIDCPOWER_ATTR_LCR_SOURCE_DELAY_MODE

lcr_stimulus_function

nidcpower.Session.lcr_stimulus_function

Specifies the type of test signal to apply to the DUT for LCR measurements.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

114 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_stimulus_function

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_stimulus_function

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.LCRStimulusFunction
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Function

• C Attribute: NIDCPOWER_ATTR_LCR_STIMULUS_FUNCTION

lcr_voltage_amplitude

nidcpower.Session.lcr_voltage_amplitude

Specifies the amplitude, in volts RMS, of the AC voltage test signal applied to the DUT for LCR
measurements. This property applies when the nidcpower.Session.lcr_stimulus_function
property is set to VOLTAGE.

Valid Values: 7.08e-4 V RMS to 7.07 V RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for your
instrument for more information.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_voltage_amplitude

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_voltage_amplitude

The following table lists the characteristics of this property.

4.1. nidcpower module 115

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Voltage Amplitude

• C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_AMPLITUDE

lcr_voltage_range

nidcpower.Session.lcr_voltage_range

Specifies the voltage range, in volts RMS, for the specified channel(s). The range defines the valid
values to which you can set the nidcpower.Session.lcr_voltage_amplitude. For valid ranges,
refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_voltage_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: LCR:AC Stimulus:Advanced:Voltage Range

• C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_RANGE

116 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

logical_name

nidcpower.Session.logical_name

Contains the logical name you specified when opening the current IVI session. You can pass a
logical name to the nidcpower.Session.__init__()method. The IVI Configuration utility must
contain an entry for the logical name. The logical name entry refers to a method section in the IVI
Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

• C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

nidcpower.Session.measure_buffer_size

Specifies the number of samples that the active channel measurement buffer can hold. The default
value is the maximum number of samples that a device is capable of recording in one second. Valid
Values: The PXIe-4051, PXIe-4147, and PXIe-4151 support values from 170 to 18000110. The
PXIe-4162/4163 supports values from 256 to 1000192. The PXIe-4190 supports values from 102
to 6000048. The PXIe-4112, PXIe-4113, and PXIe-4154 support values from 1000 to 178956970.
All other supported instruments support values from 1000 to 268435455. Default Value: Varies by
device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help
for more information about default values.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_buffer_size

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_buffer_size

The following table lists the characteristics of this property.

4.1. nidcpower module 117

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Measure Buffer Size

• C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

nidcpower.Session.measure_complete_event_delay

Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
Valid Values: The PXIe-4051 supports values from 0 seconds to 39 seconds. The PXIe-4147 sup-
ports values from 0 seconds to 26.5 seconds. The PXIe-4151 supports values from 0 seconds to 42
seconds. The PXIe-4162/4163 and PXIe-4190 support values from 0 seconds to 23 seconds. All
other supported instruments support values from 0 to 167 seconds. Default Value: Varies by device.
Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help for more
information about default values.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Event Delay

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

118 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

measure_complete_event_output_behavior

nidcpower.Session.measure_complete_event_output_behavior

Determines the event type’s behavior when a corresponding trigger is received. If you set the Measure
Complete event output behavior to PULSE, a single pulse is transmitted. If you set the Measure
Complete event output behavior to TOGGLE, the output level toggles between low and high. The
default value is PULSE.

Note: This property is not supported by all output terminals. This property is not supported on all
devices. For more information about supported devices and terminals, search Supported Properties
by Device on ni.com.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_output_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventOutputBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Output Behavior

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_BEHAVIOR

measure_complete_event_output_terminal

nidcpower.Session.measure_complete_event_output_terminal

Specifies the output terminal for exporting the Measure Complete event. Output terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

4.1. nidcpower module 119

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].measure_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

nidcpower.Session.measure_complete_event_pulse_polarity

Specifies the behavior of the Measure Complete event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

120 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

measure_complete_event_pulse_width

nidcpower.Session.measure_complete_event_pulse_width

Specifies the width of the Measure Complete event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices
is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. Valid Values:
1.5e-7 to 1.6e-6 Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

measure_complete_event_toggle_initial_state

nidcpower.Session.measure_complete_event_toggle_initial_state

Specifies the initial state of the Measure Complete event when you set the nidcpower.Session.
measure_complete_event_output_behavior property to TOGGLE. For a Single Point mode ac-
quisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session
commit. The output switches to high when the event occurs during the acquisition. If you set the
initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit. The
output switches to low when the event occurs during the acquisition. For a Sequence mode operation,
if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high the first time an event occurs during the acquisition. The second time an
event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.
If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session com-
mit. The output switches to low on the first time the event occurs during the acquisition. The second

4.1. nidcpower module 121

NI-DCPower Python API Documentation, Release 1.4.8

time the event occurs, the output switches to high. This pattern repeats for any subsequent event
occurrences. The default value is NIDCPOWER_VAL_LOW_STATE.

Note: This property is not supported on all devices. For more information about supported devices
and terminals, search Supported Properties by Device on ni.com

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventToggleInitialState
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Measure Complete Event:Toggle:Initial State

• C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

measure_record_delta_time

nidcpower.Session.measure_record_delta_time

Queries the amount of time, in seconds, between between the start of two consecutive measurements
in a measure record. Only query this property after the desired measurement settings are committed.
two measurements and the rest would differ.

Note: This property is not available when Auto Zero is configured to Once because the amount of
time between the first

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

122 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.measure_record_delta_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read only
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Measure Record Delta Time

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

nidcpower.Session.measure_record_length

Specifies how many measurements compose a measure record. When this property is set
to a value greater than 1, the nidcpower.Session.measure_when property must be set
to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER . Valid Values: 1 to
16,777,216 Default Value: 1

Note: This property is not available in a session involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_length

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Measure Record Length

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

4.1. nidcpower module 123

NI-DCPower Python API Documentation, Release 1.4.8

measure_record_length_is_finite

nidcpower.Session.measure_record_length_is_finite

Specifies whether to take continuous measurements. Call the nidcpower.Session.abort()
method to stop continuous measurements. When this property is set to False and
the nidcpower.Session.source_mode property is set to SINGLE_POINT, the nidcpower.
Session.measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE
or ON_MEASURE_TRIGGER . When this property is set to False and the nidcpower.Session.
source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when property
must be set to ON_MEASURE_TRIGGER . Default Value: True

Note: This property is not supported on all devices. For more information about supported de-
vices, search ni.com for Supported Properties by Device. This property is not available in a session
involving multiple channels.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_length_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Measure Record Length Is Finite

• C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

nidcpower.Session.measure_trigger_type

Specifies the behavior of the Measure trigger. Default Value: DIGITAL_EDGE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

124 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].measure_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Measure Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

nidcpower.Session.measure_when

Specifies when the measure unit should acquire measurements. Unless this property is config-
ured to ON_MEASURE_TRIGGER , the nidcpower.Session.measure_trigger_type property is
ignored. Refer to the Acquiring Measurements topic in the NI DC Power Supplies and SMUs Help
for more information about how to configure your measurements. Default Value: If the nidcpower.
Session.source_mode property is set to SINGLE_POINT, the default value is ON_DEMAND. This
value supports only the nidcpower.Session.measure() method and nidcpower.Session.
measure_multiple() method. If the nidcpower.Session.source_mode property is set to
SEQUENCE, the default value is AUTOMATICALLY_AFTER_SOURCE_COMPLETE. This value supports
only the nidcpower.Session.fetch_multiple() method.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_when

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_when

The following table lists the characteristics of this property.

4.1. nidcpower module 125

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype enums.MeasureWhen
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Measure When

• C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

merged_channels

nidcpower.Session.merged_channels

Specifies the channel(s) to merge with a designated primary channel of an instrument in order to
increase the maximum current you can source from the instrument. This property designates the
merge channels to combine with a primary channel. To designate the primary channel, initialize
the session to the primary channel only. Note: You cannot change the merge configuration with
this property when the session is in the Running state. For complete information on using merged
channels with this property, refer to Merged Channels in the NI DC Power Supplies and SMUs Help.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device. Devices that do not support this property behave as if
no channels were merged. Default Value: Refer to the Supported Properties by Device topic for the
default value by device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].merged_channels

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.merged_channels

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

126 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Source:Advanced:Merged Channels

• C Attribute: NIDCPOWER_ATTR_MERGED_CHANNELS

output_capacitance

nidcpower.Session.output_capacitance

Specifies whether to use a low or high capacitance on the output for the specified channel(s). Refer to
the NI PXI-4130 Output Capacitance Selection topic in the NI DC Power Supplies and SMUs Help
for more information about capacitance.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_capacitance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_capacitance

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.OutputCapacitance
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Output Capacitance

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

nidcpower.Session.output_connected

Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.
Session.output_enabled property does not change based on this property; they are independent
of each other.

Set this property to False to disconnect the output terminal from the output.

Default Value: True

4.1. nidcpower module 127

NI-DCPower Python API Documentation, Release 1.4.8

Note: Only disconnect the output when disconnecting is necessary for your application. For ex-
ample, a battery connected to the output terminal might discharge unless the relay is disconnected.
Excessive connecting and disconnecting of the output can cause premature wear on electromechani-
cal relays, such as those used by the PXIe-4147, PXI-4132, or PXIe-4138/39.

The PXIe-4051 does not have an output relay. For the PXIe-4051, this property specifies whether
the input MOSFETs are connected (ON) or disconnected (OFF).

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_connected

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_connected

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Connected

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_cutoff_current_change_limit_high

nidcpower.Session.output_cutoff_current_change_limit_high

Specifies a limit for positive current slew rate, in amps per microsecond, for output cutoff. If the
current increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_CHANGE_HIGH as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

128 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_change_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Change Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_HIGH

output_cutoff_current_change_limit_low

nidcpower.Session.output_cutoff_current_change_limit_low

Specifies a limit for negative current slew rate, in amps per microsecond, for output cutoff. If the
current decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_CHANGE_LOW as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_low

4.1. nidcpower module 129

NI-DCPower Python API Documentation, Release 1.4.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Change Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_LOW

output_cutoff_current_measure_limit_high

nidcpower.Session.output_cutoff_current_measure_limit_high

Specifies a high limit current value, in amps, for output cutoff. If the measured current exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_MEASURE_HIGH as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_measure_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Measure Limit High

130 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_HIGH

output_cutoff_current_measure_limit_low

nidcpower.Session.output_cutoff_current_measure_limit_low

Specifies a low limit current value, in amps, for output cutoff. If the measured current falls below
this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with CURRENT_MEASURE_LOW as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_measure_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Measure Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_LOW

4.1. nidcpower module 131

NI-DCPower Python API Documentation, Release 1.4.8

output_cutoff_current_overrange_enabled

nidcpower.Session.output_cutoff_current_overrange_enabled

Enables or disables current overrange functionality for output cutoff. If enabled, the output is dis-
connected when the measured current saturates the current range.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state()method with CURRENT_SATURATED as the output cut-
off reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_overrange_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_overrange_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Current Overrange Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_OVERRANGE_ENABLED

output_cutoff_delay

nidcpower.Session.output_cutoff_delay

Delays disconnecting the output by the time you specify, in seconds, when a limit is exceeded.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

132 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Delay

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_DELAY

output_cutoff_enabled

nidcpower.Session.output_cutoff_enabled

Enables or disables output cutoff functionality. If enabled, you can define output cutoffs that, if
exceeded, cause the output of the specified channel(s) to be disconnected. When this property is
disabled, all other output cutoff properties are ignored.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Instruments that do not support this property behave as if this property were set to False.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_enabled

The following table lists the characteristics of this property.

4.1. nidcpower module 133

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_ENABLED

output_cutoff_voltage_change_limit_high

nidcpower.Session.output_cutoff_voltage_change_limit_high

Specifies a limit for positive voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() with VOLTAGE_CHANGE_HIGH as the output cutoff
reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Change Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_HIGH

134 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

output_cutoff_voltage_change_limit_low

nidcpower.Session.output_cutoff_voltage_change_limit_low

Specifies a limit for negative voltage slew rate, in volts per microsecond, for output cutoff. If the
voltage decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() with VOLTAGE_CHANGE_LOW as the output cutoff rea-
son.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Change Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_LOW

output_cutoff_voltage_measure_limit_high

nidcpower.Session.output_cutoff_voltage_measure_limit_high

Specifies a high limit voltage value, in volts, for output cutoff. If the measured voltage exceeds this
limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_MEASURE_HIGH as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

4.1. nidcpower module 135

NI-DCPower Python API Documentation, Release 1.4.8

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_measure_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_measure_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Measure Limit High

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_MEASURE_LIMIT_HIGH

output_cutoff_voltage_measure_limit_low

nidcpower.Session.output_cutoff_voltage_measure_limit_low

Specifies a low limit voltage value, in volts, for output cutoff. If the measured voltage falls below this
limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_MEASURE_LOW as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_measure_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_measure_limit_low

136 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Measure Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_MEASURE_LIMIT_LOW

output_cutoff_voltage_output_limit_high

nidcpower.Session.output_cutoff_voltage_output_limit_high

Specifies a high limit voltage value, in volts, for output cutoff. If the voltage output exceeds this limit,
the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_HIGH as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Output Limit High

4.1. nidcpower module 137

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_HIGH

output_cutoff_voltage_output_limit_low

nidcpower.Session.output_cutoff_voltage_output_limit_low

Specifies a low limit voltage value, in volts, for output cutoff. If the voltage output falls below this
limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.
query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_LOW as the output
cutoff reason.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Cutoff:Voltage Output Limit Low

• C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_LOW

138 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

output_enabled

nidcpower.Session.output_enabled

Specifies whether the output is enabled (True) or disabled (False). Depending on the value you
specify for the nidcpower.Session.output_function property, you also must set the voltage
level or current level in addition to enabling the output

Default Value: The default value is True if you use the nidcpower.Session.__init__() method
to open the session. Otherwise the default value is False, including when you use a calibration session
or the deprecated programming model.

Note: If the session is in the Committed or Uncommitted states, enabling the output does not take
effect until you call the nidcpower.Session.initiate() method. Refer to the Programming
States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower
programming states.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Enabled

• C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

4.1. nidcpower module 139

NI-DCPower Python API Documentation, Release 1.4.8

output_function

nidcpower.Session.output_function

Configures the method to generate on the specified channel(s). When DC_VOLTAGE is selected, the
device generates the desired voltage level on the output as long as the output current is below the
current limit. You can use the following properties to configure the channel when DC_VOLTAGE
is selected: nidcpower.Session.voltage_level nidcpower.Session.current_limit
nidcpower.Session.current_limit_high nidcpower.Session.current_limit_low
nidcpower.Session.voltage_level_range nidcpower.Session.current_limit_range
nidcpower.Session.compliance_limit_symmetry When DC_CURRENT is selected, the de-
vice generates the desired current level on the output as long as the output voltage is below the
voltage limit. You can use the following properties to configure the channel when DC_CURRENT
is selected: nidcpower.Session.current_level nidcpower.Session.voltage_limit
nidcpower.Session.voltage_limit_high nidcpower.Session.voltage_limit_low
nidcpower.Session.current_level_range nidcpower.Session.voltage_limit_range
nidcpower.Session.compliance_limit_symmetry

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_function

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_function

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.OutputFunction
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Function

• C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

140 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

output_resistance

nidcpower.Session.output_resistance

Specifies the output resistance that the device attempts to generate for the specified channel(s). This
property is available only when you set the nidcpower.Session.output_function property on
a support device. Refer to a supported device’s topic about output resistance for more information
about selecting an output resistance. about supported devices. Default Value: 0.0

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_resistance

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Output Resistance

• C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

nidcpower.Session.overranging_enabled

Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and cur-
rent limit outside the device specification limits. True means that overranging is enabled. Refer to the
Ranges topic in the NI DC Power Supplies and SMUs Help for more information about overranging.
Default Value: False

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].overranging_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 141

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.overranging_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Overranging Enabled

• C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

nidcpower.Session.ovp_enabled

Enables (True) or disables (False) overvoltage protection (OVP). Refer to the Output Overvoltage
Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvoltage
protection. Default Value: False

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ovp_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:OVP Enabled

• C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

142 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

ovp_limit

nidcpower.Session.ovp_limit

Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages. The
limit is specified as a positive value, but symmetric positive and negative limits are enforced simulta-
neously. For example, setting the OVP Limit to 65 will configure the OVP feature to trigger an OVP
error if the output exceeds ±65 V.

Valid Values: 2 V to 210 V Default Value: 210 V

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ovp_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:OVP Limit

• C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_allocation_mode

nidcpower.Session.power_allocation_mode

Determines whether the device sources the power its source configuration requires or a specific
wattage you request; determines whether NI-DCPower proactively checks that this sourcing power
is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device
is not permitted to source power in excess of its maximum per-channel or overall sourcing
power. If the check determines a source configuration or power request would require the
device to do so, NI-DCPower returns an error.

4.1. nidcpower module 143

NI-DCPower Python API Documentation, Release 1.4.8

When this property does not configure NI-DCPower to perform a sourcing power check, a
device can attempt to fulfill source configurations that would require it to source power in
excess of its maximum per-channel or overall sourcing power and may shut down to prevent
damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by
device.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device. Devices that do not support this property behave as if
this property were set to DISABLED.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].power_allocation_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_allocation_mode

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerAllocationMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Power Allocation Mode

• C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

nidcpower.Session.power_line_frequency

Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select
a timebase for setting the nidcpower.Session.aperture_time property in power line cycles
(PLCs). in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

144 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].power_line_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_line_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Power Line Frequency

• C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

nidcpower.Session.power_source

Specifies the power source to use. NI-DCPower switches the power source used by the device to the
specified value. Default Value: AUTOMATIC is set to AUTOMATIC. However, if the session is in the
Committed or Uncommitted state when you set this property, the power source selection only occurs
after you call the nidcpower.Session.initiate() method.

Note: Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerSource
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Power Source

4.1. nidcpower module 145

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

nidcpower.Session.power_source_in_use

Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.PowerSourceInUse
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Power Source In Use

• C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

pulse_bias_current_level

nidcpower.Session.pulse_bias_current_level

Specifies the pulse bias current level, in amps, that the device attempts to generate on the
specified channel(s) during the off phase of a pulse. This property is applicable only if the
nidcpower.Session.output_function property is set to PULSE_CURRENT. Valid Values: The
valid values for this property are defined by the values you specify for the nidcpower.Session.
pulse_current_level_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

146 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

nidcpower.Session.pulse_bias_current_limit

Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the de-
sired pulse bias voltage on the specified channel(s) during the off phase of a pulse. This property is
applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.pulse_current_limit_range property.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

4.1. nidcpower module 147

NI-DCPower Python API Documentation, Release 1.4.8

pulse_bias_current_limit_high

nidcpower.Session.pulse_bias_current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating the desired
pulse voltage on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE. You must
also specify a nidcpower.Session.pulse_bias_current_limit_low to complete the asym-
metric range. Valid Values: [1% of nidcpower.Session.pulse_current_limit_range,
nidcpower.Session.pulse_current_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

148 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

pulse_bias_current_limit_low

nidcpower.Session.pulse_bias_current_limit_low

Specifies the minimum current, in amps, that the output can produce when generating the desired
pulse voltage on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE. You must
also specify a nidcpower.Session.pulse_bias_current_limit_high to complete the asym-
metric range. Valid Values: [-nidcpower.Session.pulse_current_limit_range, -1% of
nidcpower.Session.pulse_current_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_LOW

4.1. nidcpower module 149

NI-DCPower Python API Documentation, Release 1.4.8

pulse_bias_delay

nidcpower.Session.pulse_bias_delay

Determines when, in seconds, the device generates the Pulse Complete event after generating the off
level of a pulse. Valid Values: 0 to 167 seconds Default Value: 16.67 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse Bias Delay

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

pulse_bias_voltage_level

nidcpower.Session.pulse_bias_voltage_level

Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the
specified channel(s) during the off phase of a pulse. This property is applicable only if the
nidcpower.Session.output_function property is set to PULSE_VOLTAGE. Valid Values: The
valid values for this property are defined by the values you specify for the nidcpower.Session.
pulse_voltage_level_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_level

150 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

nidcpower.Session.pulse_bias_voltage_limit

Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired
current on the specified channel(s) during the off phase of a pulse. This property is applicable only
if the nidcpower.Session.output_function property is set to PULSE_CURRENT. Valid Values:
The valid values for this property are defined by the values you specify for the nidcpower.Session.
pulse_voltage_limit_range property.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 151

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

nidcpower.Session.pulse_bias_voltage_limit_high

Specifies the maximum voltage, in volts, that the output can produce when generating the desired
pulse current on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_CURRENT. You must
also specify a nidcpower.Session.pulse_bias_voltage_limit_low to complete the asym-
metric range. Valid Values: [1% of nidcpower.Session.pulse_voltage_limit_range,
nidcpower.Session.pulse_voltage_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_HIGH

152 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

pulse_bias_voltage_limit_low

nidcpower.Session.pulse_bias_voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the desired
pulse current on the specified channel(s) during the off phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_CURRENT. You must
also specify a nidcpower.Session.pulse_bias_voltage_limit_high to complete the asym-
metric range. Valid Values: [-nidcpower.Session.pulse_voltage_limit_range, -1% of
nidcpower.Session.pulse_voltage_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

4.1. nidcpower module 153

NI-DCPower Python API Documentation, Release 1.4.8

pulse_complete_event_output_terminal

nidcpower.Session.pulse_complete_event_output_terminal

Specifies the output terminal for exporting the Pulse Complete event. Output terminals can be speci-
fied in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify
the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal
name, PXI_Trig0. Default Value:The default value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_OUTPUT_TERMINAL

pulse_complete_event_pulse_polarity

nidcpower.Session.pulse_complete_event_pulse_polarity

Specifies the behavior of the Pulse Complete event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

154 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.pulse_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_POLARITY

pulse_complete_event_pulse_width

nidcpower.Session.pulse_complete_event_pulse_width

Specifies the width of the Pulse Complete event, in seconds. The minimum event pulse width value
for PXI Express devices is 250 ns. The maximum event pulse width value for PXI Express devices
is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Pulse Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

4.1. nidcpower module 155

NI-DCPower Python API Documentation, Release 1.4.8

pulse_current_level

nidcpower.Session.pulse_current_level

Specifies the pulse current level, in amps, that the device attempts to generate on the specified
channel(s) during the on phase of a pulse. This property is applicable only if the nidcpower.
Session.output_function property is set to PULSE_CURRENT. Valid Values: The valid val-
ues for this property are defined by the values you specify for the nidcpower.Session.
pulse_current_level_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Current Level

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

nidcpower.Session.pulse_current_level_range

Specifies the pulse current level range, in amps, for the specified channel(s). The range defines the
valid values to which you can set the pulse current level and pulse bias current level. This property is
applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

156 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].pulse_current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Current Level Range

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

pulse_current_limit

nidcpower.Session.pulse_current_limit

Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE and the
nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC. Valid Val-
ues: The valid values for this property are defined by the values you specify for the nidcpower.
Session.pulse_current_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 157

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

nidcpower.Session.pulse_current_limit_high

Specifies the maximum current, in amps, that the output can produce when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE. You must
also specify a nidcpower.Session.pulse_current_limit_low to complete the asymmetric
range. Valid Values: [1% of nidcpower.Session.pulse_current_limit_range, nidcpower.
Session.pulse_current_limit_range] The range bounded by the limit high and limit low must
include zero. Default Value: Search ni.com for Supported Properties by Device for the default value
by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_HIGH

158 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

pulse_current_limit_low

nidcpower.Session.pulse_current_limit_low

Specifies the minimum current, in amps, that the output can produce when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE. You must
also specify a nidcpower.Session.pulse_current_limit_high to complete the asymmet-
ric range. Valid Values: [-nidcpower.Session.pulse_current_limit_range, -1% of
nidcpower.Session.pulse_current_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_LOW

pulse_current_limit_range

nidcpower.Session.pulse_current_limit_range

Specifies the pulse current limit range, in amps, for the specified channel(s). The range defines the
valid values to which you can set the pulse current limit and pulse bias current limit. This property is
applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the specifications for your instrument.

4.1. nidcpower module 159

NI-DCPower Python API Documentation, Release 1.4.8

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range

• C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

nidcpower.Session.pulse_off_time

Determines the length, in seconds, of the off phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_off_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_off_time

The following table lists the characteristics of this property.

160 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse Off Time

• C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

nidcpower.Session.pulse_on_time

Determines the length, in seconds, of the on phase of a pulse. Valid Values: 10 microseconds to 167
seconds Default Value: 34 milliseconds

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_on_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_on_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Pulse On Time

• C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

4.1. nidcpower module 161

NI-DCPower Python API Documentation, Release 1.4.8

pulse_trigger_type

nidcpower.Session.pulse_trigger_type

Specifies the behavior of the Pulse trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Pulse Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

pulse_voltage_level

nidcpower.Session.pulse_voltage_level

Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired
pulse voltage on the specified channel(s) during the on phase of a pulse. This property is applica-
ble only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE. Valid
Values: The valid values for this property are defined by the values you specify for the nidcpower.
Session.pulse_current_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

162 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.pulse_voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

pulse_voltage_level_range

nidcpower.Session.pulse_voltage_level_range

Specifies the pulse voltage level range, in volts, for the specified channel(s). The range defines the
valid values at which you can set the pulse voltage level and pulse bias voltage level. This property is
applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the specifications for your instrument.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

4.1. nidcpower module 163

NI-DCPower Python API Documentation, Release 1.4.8

pulse_voltage_limit

nidcpower.Session.pulse_voltage_limit

Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired
pulse current on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.output_function property is set to PULSE_CURRENT and the
nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC. Valid Val-
ues: The valid values for this property are defined by the values you specify for the nidcpower.
Session.pulse_voltage_limit_range property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage_limit_high

nidcpower.Session.pulse_voltage_limit_high

Specifies the maximum voltage, in volts, that the output can produce when generating the desired
pulse current on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_CURRENT. You must
also specify a nidcpower.Session.pulse_voltage_limit_low to complete the asymmetric
range. Valid Values: [1% of nidcpower.Session.pulse_voltage_limit_range, nidcpower.
Session.pulse_voltage_limit_range] The range bounded by the limit high and limit low must
include zero. Default Value: Search ni.com for Supported Properties by Device for the default value
by device. Related Topics: Ranges; Changing Ranges; Overranging

164 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

pulse_voltage_limit_low

nidcpower.Session.pulse_voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the desired
pulse current on the specified channel(s) during the on phase of a pulse. This property is applicable
only if the nidcpower.Session.compliance_limit_symmetry property is set to ASYMMETRIC
and the nidcpower.Session.output_function property is set to PULSE_CURRENT. You must
also specify a nidcpower.Session.pulse_voltage_limit_high to complete the asymmet-
ric range. Valid Values: [-nidcpower.Session.pulse_voltage_limit_range, -1% of
nidcpower.Session.pulse_voltage_limit_range] The range bounded by the limit high and
limit low must include zero. Default Value: Search ni.com for Supported Properties by Device for
the default value by device. Related Topics: Ranges; Changing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True or if the nidcpower.Session.output_function
property is set to a pulsing method.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_low

4.1. nidcpower module 165

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_low

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage_limit_range

nidcpower.Session.pulse_voltage_limit_range

Specifies the pulse voltage limit range, in volts, for the specified channel(s). The range defines the
valid values to which you can set the pulse voltage limit and pulse bias voltage limit. This property is
applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified current limit to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the chan-
nel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

166 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range

• C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

query_instrument_status

nidcpower.Session.query_instrument_status

Specifies whether NI-DCPower queries the device status after each operation. Querying the device
status is useful for debugging. After you validate your program, you can set this property to False to
disable status checking and maximize performance. NI-DCPower ignores status checking for particu-
lar properties regardless of the setting of this property. Use the nidcpower.Session.__init__()
method to override this value. Default Value: True

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status

• C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

ready_for_pulse_trigger_event_output_terminal

nidcpower.Session.ready_for_pulse_trigger_event_output_terminal

Specifies the output terminal for exporting the Ready For Pulse Trigger event. Output terminals can
be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_output_terminal

The following table lists the characteristics of this property.

4.1. nidcpower module 167

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

ready_for_pulse_trigger_event_pulse_polarity

nidcpower.Session.ready_for_pulse_trigger_event_pulse_polarity

Specifies the behavior of the Ready For Pulse Trigger event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

168 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

ready_for_pulse_trigger_event_pulse_width

nidcpower.Session.ready_for_pulse_trigger_event_pulse_width

Specifies the width of the Ready For Pulse Trigger event, in seconds. The minimum event pulse
width value for PXI Express devices is 250 ns. The maximum event pulse width value for all devices
is 1.6 microseconds. Default Value: The default value for PXI Express devices is 250 ns

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

requested_power_allocation

nidcpower.Session.requested_power_allocation

Specifies the power, in watts, to request the device to source from each active channel.
This property defines the power to source from the device only if the nidcpower.Session.
power_allocation_mode property is set to MANUAL.

The power you request with this property may be incompatible with the power a given source
configuration requires or the power the device can provide: If the requested power is less than the
power required for the source configuration, the device does not exceed the requested power, and
NI-DCPower returns an error. If the requested power is greater than the maximum per-channel or
overall sourcing power, the device does not exceed the allowed power, and NI-DCPower returns
an error.

Valid Values: [0, device per-channel maximum power]
Default Value: Refer to the Supported Properties by Device topic for the default value by device.

4.1. nidcpower module 169

NI-DCPower Python API Documentation, Release 1.4.8

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].requested_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.requested_power_allocation

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Requested Power Allocation

• C Attribute: NIDCPOWER_ATTR_REQUESTED_POWER_ALLOCATION

reset_average_before_measurement

nidcpower.Session.reset_average_before_measurement

Specifies whether the measurement returned from any measurement call starts with a new measure-
ment call (True) or returns a measurement that has already begun or completed(False). When you
set the nidcpower.Session.samples_to_average property in the Running state, the channel
measurements might move out of synchronization. While NI-DCPower automatically synchronizes
measurements upon the initialization of a session, you can force a synchronization in the running
state before you run the nidcpower.Session.measure_multiple() method. To force a syn-
chronization in the running state, set this property to True, and then run the nidcpower.Session.
measure_multiple() method, specifying all channels in the channel name parameter. You can
set the nidcpower.Session.reset_average_before_measurement property to False after the
nidcpower.Session.measure_multiple() method completes. Default Value: True

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

170 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].reset_average_before_measurement

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.reset_average_before_measurement

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement

• C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

nidcpower.Session.samples_to_average

Specifies the number of samples to average when you take a measurement. Increasing the number
of samples to average decreases measurement noise but increases the time required to take a mea-
surement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averaging topic
for optional property settings to improve immunity to certain noise types, or refer to the NI PXIe-
4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC
Noise Rejection topic for information about improving noise immunity for those devices. Default
Value: NI PXI-4110 or NI PXI-4130—10 NI PXI-4132—1 NI PXIe-4112—1 NI PXIe-4113—1 NI
PXIe-4140/4141—1 NI PXIe-4142/4143—1 NI PXIe-4144/4145—1 NI PXIe-4154—500

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].samples_to_average

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.samples_to_average

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

4.1. nidcpower module 171

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Measurement:Samples To Average

• C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

self_calibration_persistence

nidcpower.Session.self_calibration_persistence

Specifies whether the values calculated during self-calibration should be written to hardware to be
used until the next self-calibration or only used until the nidcpower.Session.reset_device()
method is called or the machine is powered down. This property affects the behavior of the
nidcpower.Session.self_cal() method. When set to KEEP_IN_MEMORY , the values calculated
by the nidcpower.Session.self_cal() method are used in the existing session, as well as in all
further sessions until you call the nidcpower.Session.reset_device()method or restart the ma-
chine. When you set this property to WRITE_TO_EEPROM , the values calculated by the nidcpower.
Session.self_cal() method are written to hardware and used in the existing session and in all
subsequent sessions until another call to the nidcpower.Session.self_cal() method is made.
about supported devices. Default Value: KEEP_IN_MEMORY

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].self_calibration_persistence

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.self_calibration_persistence

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.SelfCalibrationPersistence
Permissions read-write
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Advanced:Self-Calibration Persistence

• C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

172 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

sense

nidcpower.Session.sense

Selects either local or remote sensing of the output voltage for the specified channel(s). Refer to the
Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information
about sensing voltage on supported channels and about devices that support local and/or remote
sensing. Default Value: The default value is LOCAL if the device supports local sense. Otherwise,
the default and only supported value is REMOTE.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sense

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sense

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Sense
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Measurement:Sense

• C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

nidcpower.Session.sequence_advance_trigger_type

Specifies the behavior of the Sequence Advance trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_advance_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

4.1. nidcpower module 173

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.sequence_advance_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_behavior

nidcpower.Session.sequence_engine_done_event_output_behavior

Determines the event type’s behavior when a corresponding trigger is received. If you set the Se-
quence Engine Done event output behavior to PULSE, a single pulse is transmitted. If you set the
Sequence Engine Done event output behavior to TOGGLE, the output level toggles between low and
high. The default value is PULSE.

Note: This property is not supported by all output terminals. This property is not supported on all
devices. For more information about supported devices and terminals, search Supported Properties
by Device on ni.com.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_output_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventOutputBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Output Behavior

174 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_BEHAVIOR

sequence_engine_done_event_output_terminal

nidcpower.Session.sequence_engine_done_event_output_terminal

Specifies the output terminal for exporting the Sequence Engine Done Complete event. Output termi-
nals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

nidcpower.Session.sequence_engine_done_event_pulse_polarity

Specifies the behavior of the Sequence Engine Done event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

4.1. nidcpower module 175

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].sequence_engine_done_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_POLARITY

sequence_engine_done_event_pulse_width

nidcpower.Session.sequence_engine_done_event_pulse_width

Specifies the width of the Sequence Engine Done event, in seconds. The minimum event pulse width
value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices
is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. Valid Values:
1.5e-7 to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default
value for PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

176 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_engine_done_event_toggle_initial_state

nidcpower.Session.sequence_engine_done_event_toggle_initial_state

Specifies the initial state of the Sequence Engine Done event when you set the nidcpower.Session.
sequence_engine_done_event_output_behavior property to TOGGLE. For a Single Point mode
acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at
session commit. The output switches to high when the event occurs during the acquisition. If you set
the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit.
The output switches to low when the event occurs during the acquisition. For a Sequence mode
operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at
session commit. The output switches to high the first time an event occurs during the acquisition.
The second time an event occurs, the output switches to low. This pattern repeats for any subsequent
event occurrences. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to
high at session commit. The output switches to low on the first time the event occurs during the
acquisition. The second time the event occurs, the output switches to high. This pattern repeats for
any subsequent event occurrences. The default value is NIDCPOWER_VAL_LOW_STATE.

Note: This property is not supported on all devices. For more information about supported devices
and terminals, search Supported Properties by Device on ni.com

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_toggle_initial_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventToggleInitialState
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Engine Done Event:Toggle:Initial State

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_TOGGLE_INITIAL_STATE

4.1. nidcpower module 177

NI-DCPower Python API Documentation, Release 1.4.8

sequence_iteration_complete_event_output_behavior

nidcpower.Session.sequence_iteration_complete_event_output_behavior

Determines the event type’s behavior when a corresponding trigger is received. If you set the Se-
quence Iteration Complete event output behavior to PULSE, a single pulse is transmitted. If you set
the Sequence Iteration Complete event output behavior to TOGGLE, the output level toggles between
low and high. The default value is PULSE.

Note: This property is not supported by all output terminals. This property is not supported on all
devices. For more information about supported devices and terminals, search Supported Properties
by Device on ni.com.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_output_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventOutputBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Output Behavior

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_BEHAVIOR

sequence_iteration_complete_event_output_terminal

nidcpower.Session.sequence_iteration_complete_event_output_terminal

Specifies the output terminal for exporting the Sequence Iteration Complete event. Output terminals
can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0,
you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the
shortened terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

178 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].sequence_iteration_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

nidcpower.Session.sequence_iteration_complete_event_pulse_polarity

Specifies the behavior of the Sequence Iteration Complete event. Default Value: HIGH

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

4.1. nidcpower module 179

NI-DCPower Python API Documentation, Release 1.4.8

sequence_iteration_complete_event_pulse_width

nidcpower.Session.sequence_iteration_complete_event_pulse_width

Specifies the width of the Sequence Iteration Complete event, in seconds. The minimum event pulse
width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express
devices is 250 ns. The maximum event pulse width value for all devices is 1.6 microseconds. the NI
DC Power Supplies and SMUs Help for information about supported devices. Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_toggle_initial_state

nidcpower.Session.sequence_iteration_complete_event_toggle_initial_state

Specifies the initial state of the Sequence Iteration Complete event when you set the nidcpower.
Session.sequence_iteration_complete_event_output_behavior property to TOGGLE. For
a Single Point mode acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the out-
put is set to low at session commit. The output switches to high when the event occurs during the
acquisition. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high
state at session commit. The output switches to low when the event occurs during the acquisition. For
a Sequence mode operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output
is set to low at session commit. The output switches to high the first time an event occurs during the
acquisition. The second time an event occurs, the output switches to low. This pattern repeats for
any subsequent event occurrences. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the
output is set to high at session commit. The output switches to low on the first time the event occurs

180 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

during the acquisition. The second time the event occurs, the output switches to high. This pattern
repeats for any subsequent event occurrences. The default value is NIDCPOWER_VAL_LOW_STATE.

Note: This property is not supported on all devices. For more information about supported devices
and terminals, search Supported Properties by Device on ni.com

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventToggleInitialState
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Sequence Iteration Complete Event:Toggle:Initial State

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

sequence_loop_count

nidcpower.Session.sequence_loop_count

Specifies the number of times a sequence is run after initiation. Refer to the Sequence Source Mode
topic in the NI DC Power Supplies and SMUs Help for more information about the sequence loop
count. When the nidcpower.Session.sequence_loop_count_is_finite property is set to
False, the nidcpower.Session.sequence_loop_count property is ignored. Valid Range: 1 to
2147483647 Default Value: 1

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

4.1. nidcpower module 181

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.channels[...].sequence_loop_count

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count

The following table lists the characteristics of this property.

Characteristic Value
Datatype int
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Sequence Loop Count

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

sequence_loop_count_is_finite

nidcpower.Session.sequence_loop_count_is_finite

Specifies whether a sequence should repeat indefinitely. Refer to the Sequence Source Mode topic
in the NI DC Power Supplies and SMUs Help for more information about infinite sequencing.
When the nidcpower.Session.sequence_loop_count_is_finite property is set to False, the
nidcpower.Session.sequence_loop_count property is ignored. Default Value: True

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_loop_count_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count_is_finite

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

182 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

• LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

sequence_step_delta_time

nidcpower.Session.sequence_step_delta_time

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_step_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME

sequence_step_delta_time_enabled

nidcpower.Session.sequence_step_delta_time_enabled

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_step_delta_time_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time_enabled

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

4.1. nidcpower module 183

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME_ENABLED

serial_number

nidcpower.Session.serial_number

Contains the serial number for the device you are currently using.

Tip: This property can be set/get on specific instruments within your nidcpower.Session in-
stance. Use Python index notation on the repeated capabilities container instruments to specify a
subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities instruments

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Serial Number

• C Attribute: NIDCPOWER_ATTR_SERIAL_NUMBER

shutdown_trigger_type

nidcpower.Session.shutdown_trigger_type

Specifies the behavior of the Shutdown trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].shutdown_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

184 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Example: my_session.shutdown_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Shutdown Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SHUTDOWN_TRIGGER_TYPE

simulate

nidcpower.Session.simulate

Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simulated.
Default Value: False

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

• C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_behavior

nidcpower.Session.source_complete_event_output_behavior

Determines the event type’s behavior when a corresponding trigger is received. If you set the Source
Complete event output behavior to PULSE, a single pulse is transmitted. If you set the Source Com-
plete event output behavior to TOGGLE, the output level toggles between low and high. The default
value is PULSE.

Note: This property is not supported by all output terminals. This property is not supported on all
devices. For more information about supported devices and terminals, search Supported Properties
by Device on ni.com.

4.1. nidcpower module 185

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_output_behavior

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventOutputBehavior
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Output Behavior

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_BEHAVIOR

source_complete_event_output_terminal

nidcpower.Session.source_complete_event_output_terminal

Specifies the output terminal for exporting the Source Complete event. Output terminals can be
specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can
specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened
terminal name, PXI_Trig0.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_output_terminal

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read-write
Repeated Capabilities channels

186 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Output Terminal

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

nidcpower.Session.source_complete_event_pulse_polarity

Specifies the behavior of the Source Complete event. Default Value: HIGH

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_polarity

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.Polarity
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Pulse:Polarity

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

4.1. nidcpower module 187

NI-DCPower Python API Documentation, Release 1.4.8

source_complete_event_pulse_width

nidcpower.Session.source_complete_event_pulse_width

Specifies the width of the Source Complete event, in seconds. The minimum event pulse width value
for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250
ns. The maximum event pulse width value for all devices is 1.6 microseconds Valid Values: 1.5e-7
to 1.6e-6 seconds Default Value: The default value for PXI devices is 150 ns. The default value for
PXI Express devices is 250 ns.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_width

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Pulse:Width

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

source_complete_event_toggle_initial_state

nidcpower.Session.source_complete_event_toggle_initial_state

Specifies the initial state of the Source Complete event when you set the nidcpower.Session.
source_complete_event_output_behavior property to TOGGLE. For a Single Point mode ac-
quisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session
commit. The output switches to high when the event occurs during the acquisition. If you set the
initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit. The
output switches to low when the event occurs during the acquisition. For a Sequence mode operation,
if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high the first time an event occurs during the acquisition. The second time an
event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.

188 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session com-
mit. The output switches to low on the first time the event occurs during the acquisition. The second
time the event occurs, the output switches to high. This pattern repeats for any subsequent event
occurrences. The default value is NIDCPOWER_VAL_LOW_STATE.

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices and
terminals, search Supported Properties by Device on ni.com

Note: One or more of the referenced values are not in the Python API for this driver. Enums that
only define values, or represent True/False, have been removed.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.EventToggleInitialState
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Events:Source Complete Event:Toggle:Initial State

• C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

source_delay

nidcpower.Session.source_delay

Determines when, in seconds, the device generates the Source Complete event, poten-
tially starting a measurement if the nidcpower.Session.measure_when property is set to
AUTOMATICALLY_AFTER_SOURCE_COMPLETE. Refer to the Single Point Source Mode and Sequence
Source Mode topics for more information. Valid Values: The PXIe-4051 supports values from 0 to
39 seconds. The PXIe-4147 supports values from 0 to 26.5 seconds. The PXIe-4151 supports values
from 0 to 42 seconds. The PXIe-4162/4163 and PXIe-4190 support values from 0 to 23 seconds. All
other supported instruments support values from 0 to 167 seconds. Default Value: 0.01667 seconds

4.1. nidcpower module 189

NI-DCPower Python API Documentation, Release 1.4.8

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_delay

The following table lists the characteristics of this property.

Characteristic Value
Datatype hightime.timedelta, datetime.timedelta, or float in seconds
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Advanced:Source Delay

• C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

nidcpower.Session.source_mode

Specifies whether to run a single output point or a sequence. Refer to the Single Point Source Mode
and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more information
about source modes. Default value: SINGLE_POINT

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_mode

The following table lists the characteristics of this property.

190 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype enums.SourceMode
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Source Mode

• C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

nidcpower.Session.source_trigger_type

Specifies the behavior of the Source trigger. Default Value: NONE

Note: NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic
loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search
ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_trigger_type

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Source Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

4.1. nidcpower module 191

NI-DCPower Python API Documentation, Release 1.4.8

specific_driver_description

nidcpower.Session.specific_driver_description

Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

nidcpower.Session.specific_driver_prefix

Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins
with this prefix.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

nidcpower.Session.specific_driver_revision

Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

192 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

nidcpower.Session.specific_driver_vendor

Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

• C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

nidcpower.Session.start_trigger_type

Specifies the behavior of the Start trigger. Default Value: NONE

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].start_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.start_trigger_type

4.1. nidcpower module 193

NI-DCPower Python API Documentation, Release 1.4.8

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TriggerType
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Triggers:Start Trigger:Trigger Type

• C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

nidcpower.Session.supported_instrument_models

Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

Characteristic Value
Datatype str
Permissions read only
Repeated Capabilities None

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument
Models

• C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

nidcpower.Session.transient_response

Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies
and SMUs Help for more information about transient response. Default Value: NORMAL

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].transient_response

194 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.transient_response

The following table lists the characteristics of this property.

Characteristic Value
Datatype enums.TransientResponse
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Transient Response

• C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

nidcpower.Session.voltage_compensation_frequency

The frequency at which a pole-zero pair is added to the system when the channel is in Constant
Voltage mode. Default value: Determined by the value of the NORMAL setting of the nidcpower.
Session.transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_compensation_frequency

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Fre-
quency

4.1. nidcpower module 195

NI-DCPower Python API Documentation, Release 1.4.8

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

voltage_gain_bandwidth

nidcpower.Session.voltage_gain_bandwidth

The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles
and zeroes. This property takes effect when the channel is in Constant Voltage mode. Default Value:
Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response
property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_gain_bandwidth

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Gain Bandwidth

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

voltage_level

nidcpower.Session.voltage_level

Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to
DC_VOLTAGE.

Valid Values: The valid values for this property are defined by the values you specify for the
nidcpower.Session.voltage_level_range property.

196 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

Note: The channel must be enabled for the specified voltage level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage_level_autorange

nidcpower.Session.voltage_level_autorange

Specifies whether NI-DCPower automatically selects the voltage level range based on the desired
voltage level for the specified channel(s). If you set this property to ON, NI-DCPower ignores any
changes you make to the nidcpower.Session.voltage_level_range property. If you change
the nidcpower.Session.voltage_level_autorange property from ON to OFF, NI-DCPower re-
tains the last value the nidcpower.Session.voltage_level_range property was set to (or the
default value if the property was never set) and uses that value as the voltage level range. Query
the nidcpower.Session.voltage_level_range property by using the nidcpower.Session.
_get_attribute_vi_int32() method for information about which range NI-DCPower automati-
cally selects. The nidcpower.Session.voltage_level_autorange property is applicable only
if the nidcpower.Session.output_function property is set to DC_VOLTAGE. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_autorange

The following table lists the characteristics of this property.

4.1. nidcpower module 197

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level Autorange

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage_level_range

nidcpower.Session.voltage_level_range

Specifies the voltage level range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage level can be set. Use the nidcpower.Session.
voltage_level_autorange property to enable automatic selection of the voltage level range.
The nidcpower.Session.voltage_level_range property is applicable only if the nidcpower.
Session.output_function property is set to DC_VOLTAGE.

For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified voltage level range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Voltage:Voltage Level Range

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

198 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

voltage_limit

nidcpower.Session.voltage_limit

Specifies the voltage limit, in volts, that the output cannot exceed when generating the desired
current level on the specified channels. This property is applicable only if the nidcpower.
Session.output_function property is set to DC_CURRENT and the nidcpower.Session.
compliance_limit_symmetry property is set to SYMMETRIC.

Valid Values: The valid values for this property are defined by the values to which the nidcpower.
Session.voltage_limit_range property is set.

Note: The channel must be enabled for the specified current level to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the chan-
nel.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

voltage_limit_autorange

nidcpower.Session.voltage_limit_autorange

Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired
voltage limit for the specified channel(s). If this property is set to ON, NI-DCPower ignores any
changes you make to the nidcpower.Session.voltage_limit_range property. If you change
the nidcpower.Session.voltage_limit_autorange property from ON to OFF, NI-DCPower re-
tains the last value the nidcpower.Session.voltage_limit_range property was set to (or the
default value if the property was never set) and uses that value as the voltage limit range. Query

4.1. nidcpower module 199

NI-DCPower Python API Documentation, Release 1.4.8

the nidcpower.Session.voltage_limit_range property by using the nidcpower.Session.
_get_attribute_vi_int32() method to find out which range NI-DCPower automatically se-
lects. The nidcpower.Session.voltage_limit_autorange property is applicable only if the
nidcpower.Session.output_function property is set to DC_CURRENT. Default Value: OFF

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_autorange

The following table lists the characteristics of this property.

Characteristic Value
Datatype bool
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Autorange

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

nidcpower.Session.voltage_limit_high

Specifies the maximum voltage, in volts, that the output can produce when generating the de-
sired current on the specified channel(s). This property is applicable only if the nidcpower.
Session.compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_CURRENT. You must also specify a nidcpower.
Session.voltage_limit_low to complete the asymmetric range. Valid Values: [1% of
nidcpower.Session.voltage_limit_range, nidcpower.Session.voltage_limit_range]
The range bounded by the limit high and limit low must include zero. Default Value: Search ni.com
for Supported Properties by Device for the default value by device. Related Topics: Ranges; Chang-
ing Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_high

200 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_high

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit High

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

nidcpower.Session.voltage_limit_low

Specifies the minimum voltage, in volts, that the output can produce when generating the de-
sired current on the specified channel(s). This property is applicable only if the nidcpower.
Session.compliance_limit_symmetry property is set to ASYMMETRIC and the nidcpower.
Session.output_function property is set to DC_CURRENT. You must also specify a nidcpower.
Session.voltage_limit_high to complete the asymmetric range. Valid Values: [-nidcpower.
Session.voltage_limit_range, -1% of nidcpower.Session.voltage_limit_range] The
range bounded by the limit high and limit low must include zero. Default Value: Search ni.com for
Supported Properties by Device for the default value by device. Related Topics: Ranges; Changing
Ranges; Overranging

Note: The limit may be extended beyond the selected limit range if the nidcpower.Session.
overranging_enabled property is set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads
and SMUs these correspond to “sinking” and “input”, respectively.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_low

The following table lists the characteristics of this property.

4.1. nidcpower module 201

NI-DCPower Python API Documentation, Release 1.4.8

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Low

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

nidcpower.Session.voltage_limit_range

Specifies the voltage limit range, in volts, for the specified channel(s). The range defines
the valid values to which the voltage limit can be set. Use the nidcpower.Session.
voltage_limit_autorange property to enable automatic selection of the voltage limit range.
The nidcpower.Session.voltage_limit_range property is applicable only if the nidcpower.
Session.output_function property is set to DC_CURRENT.

For valid ranges, refer to the specifications for your instrument.

Note: The channel must be enabled for the specified voltage limit range to take effect. Refer to the
nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_range

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:DC Current:Voltage Limit Range

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_RANGE

202 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

voltage_pole_zero_ratio

nidcpower.Session.voltage_pole_zero_ratio

The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage
mode. Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.
transient_response property.

Note: This property is not supported on all devices. For more information about supported devices,
search ni.com for Supported Properties by Device.

Tip: This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_pole_zero_ratio

The following table lists the characteristics of this property.

Characteristic Value
Datatype float
Permissions read-write
Repeated Capabilities channels

Tip: This property corresponds to the following LabVIEW Property or C Attribute:

• LabVIEW Property: Source:Custom Transient Response:Voltage:Pole-Zero Ratio

• C Attribute: NIDCPOWER_ATTR_VOLTAGE_POLE_ZERO_RATIO

Session

• Session

• Methods

– abort

– clear_latched_output_cutoff_state

– close

– commit

– configure_aperture_time

– configure_lcr_compensation

– configure_lcr_custom_cable_compensation

– create_advanced_sequence

4.1. nidcpower module 203

NI-DCPower Python API Documentation, Release 1.4.8

– create_advanced_sequence_commit_step

– create_advanced_sequence_step

– delete_advanced_sequence

– disable

– export_attribute_configuration_buffer

– export_attribute_configuration_file

– fetch_multiple

– fetch_multiple_lcr

– get_channel_name

– get_channel_names

– get_ext_cal_last_date_and_time

– get_ext_cal_last_temp

– get_ext_cal_recommended_interval

– get_lcr_compensation_data

– get_lcr_compensation_last_date_and_time

– get_lcr_custom_cable_compensation_data

– get_self_cal_last_date_and_time

– get_self_cal_last_temp

– import_attribute_configuration_buffer

– import_attribute_configuration_file

– initiate

– lock

– measure

– measure_multiple

– measure_multiple_lcr

– perform_lcr_load_compensation

– perform_lcr_open_compensation

– perform_lcr_open_custom_cable_compensation

– perform_lcr_short_compensation

– perform_lcr_short_custom_cable_compensation

– query_in_compliance

– query_latched_output_cutoff_state

– query_max_current_limit

– query_max_voltage_level

– query_min_current_limit

204 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

– query_output_state

– read_current_temperature

– reset

– reset_device

– reset_with_defaults

– self_cal

– self_test

– send_software_edge_trigger

– set_sequence

– unlock

– wait_for_event

• Properties

– active_advanced_sequence

– active_advanced_sequence_step

– actual_power_allocation

– aperture_time

– aperture_time_auto_mode

– aperture_time_units

– autorange

– autorange_aperture_time_mode

– autorange_behavior

– autorange_maximum_delay_after_range_change

– autorange_minimum_aperture_time

– autorange_minimum_aperture_time_units

– autorange_minimum_current_range

– autorange_minimum_voltage_range

– autorange_threshold_mode

– auto_zero

– auxiliary_power_source_available

– cable_length

– channel_count

– compliance_limit_symmetry

– conduction_voltage_mode

– conduction_voltage_off_threshold

– conduction_voltage_on_threshold

4.1. nidcpower module 205

NI-DCPower Python API Documentation, Release 1.4.8

– current_compensation_frequency

– current_gain_bandwidth

– current_level

– current_level_autorange

– current_level_falling_slew_rate

– current_level_range

– current_level_rising_slew_rate

– current_limit

– current_limit_autorange

– current_limit_behavior

– current_limit_high

– current_limit_low

– current_limit_range

– current_pole_zero_ratio

– dc_noise_rejection

– digital_edge_measure_trigger_input_terminal

– digital_edge_pulse_trigger_input_terminal

– digital_edge_sequence_advance_trigger_input_terminal

– digital_edge_shutdown_trigger_input_terminal

– digital_edge_source_trigger_input_terminal

– digital_edge_start_trigger_input_terminal

– driver_setup

– exported_measure_trigger_output_terminal

– exported_pulse_trigger_output_terminal

– exported_sequence_advance_trigger_output_terminal

– exported_source_trigger_output_terminal

– exported_start_trigger_output_terminal

– fetch_backlog

– instrument_firmware_revision

– instrument_manufacturer

– instrument_mode

– instrument_model

– interlock_input_open

– io_resource_descriptor

– isolation_state

206 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

– lcr_actual_load_reactance

– lcr_actual_load_resistance

– lcr_ac_dither_enabled

– lcr_ac_electrical_cable_length_delay

– lcr_automatic_level_control

– lcr_current_amplitude

– lcr_current_range

– lcr_custom_measurement_time

– lcr_dc_bias_automatic_level_control

– lcr_dc_bias_current_level

– lcr_dc_bias_current_range

– lcr_dc_bias_source

– lcr_dc_bias_transient_response

– lcr_dc_bias_voltage_level

– lcr_dc_bias_voltage_range

– lcr_frequency

– lcr_impedance_auto_range

– lcr_impedance_range

– lcr_impedance_range_source

– lcr_load_capacitance

– lcr_load_compensation_enabled

– lcr_load_inductance

– lcr_load_resistance

– lcr_measured_load_reactance

– lcr_measured_load_resistance

– lcr_measurement_time

– lcr_open_compensation_enabled

– lcr_open_conductance

– lcr_open_short_load_compensation_data_source

– lcr_open_susceptance

– lcr_short_compensation_enabled

– lcr_short_custom_cable_compensation_enabled

– lcr_short_reactance

– lcr_short_resistance

– lcr_source_aperture_time

4.1. nidcpower module 207

NI-DCPower Python API Documentation, Release 1.4.8

– lcr_source_delay_mode

– lcr_stimulus_function

– lcr_voltage_amplitude

– lcr_voltage_range

– logical_name

– measure_buffer_size

– measure_complete_event_delay

– measure_complete_event_output_behavior

– measure_complete_event_output_terminal

– measure_complete_event_pulse_polarity

– measure_complete_event_pulse_width

– measure_complete_event_toggle_initial_state

– measure_record_delta_time

– measure_record_length

– measure_record_length_is_finite

– measure_trigger_type

– measure_when

– merged_channels

– output_capacitance

– output_connected

– output_cutoff_current_change_limit_high

– output_cutoff_current_change_limit_low

– output_cutoff_current_measure_limit_high

– output_cutoff_current_measure_limit_low

– output_cutoff_current_overrange_enabled

– output_cutoff_delay

– output_cutoff_enabled

– output_cutoff_voltage_change_limit_high

– output_cutoff_voltage_change_limit_low

– output_cutoff_voltage_measure_limit_high

– output_cutoff_voltage_measure_limit_low

– output_cutoff_voltage_output_limit_high

– output_cutoff_voltage_output_limit_low

– output_enabled

– output_function

208 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

– output_resistance

– overranging_enabled

– ovp_enabled

– ovp_limit

– power_allocation_mode

– power_line_frequency

– power_source

– power_source_in_use

– pulse_bias_current_level

– pulse_bias_current_limit

– pulse_bias_current_limit_high

– pulse_bias_current_limit_low

– pulse_bias_delay

– pulse_bias_voltage_level

– pulse_bias_voltage_limit

– pulse_bias_voltage_limit_high

– pulse_bias_voltage_limit_low

– pulse_complete_event_output_terminal

– pulse_complete_event_pulse_polarity

– pulse_complete_event_pulse_width

– pulse_current_level

– pulse_current_level_range

– pulse_current_limit

– pulse_current_limit_high

– pulse_current_limit_low

– pulse_current_limit_range

– pulse_off_time

– pulse_on_time

– pulse_trigger_type

– pulse_voltage_level

– pulse_voltage_level_range

– pulse_voltage_limit

– pulse_voltage_limit_high

– pulse_voltage_limit_low

– pulse_voltage_limit_range

4.1. nidcpower module 209

NI-DCPower Python API Documentation, Release 1.4.8

– query_instrument_status

– ready_for_pulse_trigger_event_output_terminal

– ready_for_pulse_trigger_event_pulse_polarity

– ready_for_pulse_trigger_event_pulse_width

– requested_power_allocation

– reset_average_before_measurement

– samples_to_average

– self_calibration_persistence

– sense

– sequence_advance_trigger_type

– sequence_engine_done_event_output_behavior

– sequence_engine_done_event_output_terminal

– sequence_engine_done_event_pulse_polarity

– sequence_engine_done_event_pulse_width

– sequence_engine_done_event_toggle_initial_state

– sequence_iteration_complete_event_output_behavior

– sequence_iteration_complete_event_output_terminal

– sequence_iteration_complete_event_pulse_polarity

– sequence_iteration_complete_event_pulse_width

– sequence_iteration_complete_event_toggle_initial_state

– sequence_loop_count

– sequence_loop_count_is_finite

– sequence_step_delta_time

– sequence_step_delta_time_enabled

– serial_number

– shutdown_trigger_type

– simulate

– source_complete_event_output_behavior

– source_complete_event_output_terminal

– source_complete_event_pulse_polarity

– source_complete_event_pulse_width

– source_complete_event_toggle_initial_state

– source_delay

– source_mode

– source_trigger_type

210 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

– specific_driver_description

– specific_driver_prefix

– specific_driver_revision

– specific_driver_vendor

– start_trigger_type

– supported_instrument_models

– transient_response

– voltage_compensation_frequency

– voltage_gain_bandwidth

– voltage_level

– voltage_level_autorange

– voltage_level_range

– voltage_limit

– voltage_limit_autorange

– voltage_limit_high

– voltage_limit_low

– voltage_limit_range

– voltage_pole_zero_ratio

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the underlying driver func-
tion call. This can be the actual function based on the Session method being called, or it can be the
appropriate Get/Set Attribute function, such as niDCPower_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities. The
parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or an integer.
If it is a string, you can indicate a range using the same format as the driver: '0-2' or '0:2'

Some repeated capabilities use a prefix before the number and this is optional

channels

nidcpower.Session.channels

session.channels['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

4.1. nidcpower module 211

NI-DCPower Python API Documentation, Release 1.4.8

instruments

nidcpower.Session.instruments

session.instruments['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

Enums

Enums used in NI-DCPower

ApertureTimeAutoMode

class nidcpower.ApertureTimeAutoMode

OFF

Disables automatic aperture time scaling. The nidcpower.Session.aperture_time property specifies
the aperture time for all ranges.

SHORT

Prioritizes measurement speed over measurement accuracy by quickly scaling down aperture time in larger
current ranges. The nidcpower.Session.aperture_time property specifies the aperture time for the
minimum range.

NORMAL

Balances measurement accuracy and speed by scaling down aperture time in larger current ranges. The
nidcpower.Session.aperture_time property specifies the aperture time for the minimum range.

LONG

Prioritizes accuracy while still decreasing measurement time by slowly scaling down aperture time in larger
current ranges. The nidcpower.Session.aperture_time property specifies the aperture time for the
minimum range.

ApertureTimeUnits

class nidcpower.ApertureTimeUnits

SECONDS

Specifies aperture time in seconds.

POWER_LINE_CYCLES

Specifies aperture time in power line cycles (PLCs).

212 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

AutoZero

class nidcpower.AutoZero

OFF

Disables auto zero.

ONCE

Makes zero conversions following the first measurement after initiating the device. The device uses these
zero conversions for the preceding measurement and future measurements until the device is reinitiated.

ON

Makes zero conversions for every measurement.

AutorangeApertureTimeMode

class nidcpower.AutorangeApertureTimeMode

AUTO

NI-DCPower optimizes the aperture time for the autorange algorithm based on the module range.

CUSTOM

The user specifies a minimum aperture time for the algorithm using the nidcpower.Session.
autorange_minimum_aperture_time property and the corresponding nidcpower.Session.
autorange_minimum_aperture_time_units property.

AutorangeBehavior

class nidcpower.AutorangeBehavior

UP_TO_LIMIT_THEN_DOWN

Go to limit range then range down as needed until measured value is within thresholds.

UP

go up one range when the upper threshold is reached.

UP_AND_DOWN

go up or down one range when the upper/lower threshold is reached.

AutorangeThresholdMode

class nidcpower.AutorangeThresholdMode

NORMAL

Thresholds are selected based on a balance between accuracy and hysteresis.

FAST_STEP

Optimized for faster changes in the measured signal. Thresholds are configured to be a smaller percentage
of the range.

4.1. nidcpower module 213

NI-DCPower Python API Documentation, Release 1.4.8

HIGH_HYSTERESIS

Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are config-
ured to be a larger percentage of the range.

MEDIUM_HYSTERESIS

Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are config-
ured to be a medium percentage of the range.

HOLD

Attempt to maintain the active range. Thresholds will favor the active range.

CableLength

class nidcpower.CableLength

ZERO_M

Uses predefined cable compensation data for a 0m cable (direct connection).

NI_STANDARD_0_5M

Uses predefined cable compensation data for an NI standard 0.5m coaxial cable.

NI_STANDARD_1M

Uses predefined cable compensation data for an NI standard 1m coaxial cable.

NI_STANDARD_2M

Uses predefined cable compensation data for an NI standard 2m coaxial cable.

NI_STANDARD_4M

Uses predefined cable compensation data for an NI standard 4m coaxial cable.

NI_STANDARD_TRIAXIAL_1M

Uses predefined cable compensation data for an NI standard 1m triaxial cable.

NI_STANDARD_TRIAXIAL_2M

Uses predefined cable compensation data for an NI standard 2m triaxial cable.

NI_STANDARD_TRIAXIAL_4M

Uses predefined cable compensation data for an NI standard 4m triaxial cable.

CUSTOM_ONBOARD_STORAGE

Uses previously generated custom cable compensation data from onboard storage. Only the most recently
performed compensation data for each custom cable compensation type (open, short) is stored.

CUSTOM_AS_CONFIGURED

Uses the custom cable compensation data supplied to nidcpower.Session.
configure_lcr_custom_cable_compensation(). Use this option to manage multiple sets of
custom cable compensation data.

214 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

ComplianceLimitSymmetry

class nidcpower.ComplianceLimitSymmetry

SYMMETRIC

Compliance limits are specified symmetrically about 0.

ASYMMETRIC

Compliance limits can be specified asymmetrically with respect to 0.

ConductionVoltageMode

class nidcpower.ConductionVoltageMode

AUTOMATIC

The conduction voltage feature is only enabled when you set the nidcpower.Session.
output_function property to DC_CURRENT.

ENABLED

The conduction voltage feature is enabled.

DISABLED

The conduction voltage feature is disabled.

CurrentLimitBehavior

class nidcpower.CurrentLimitBehavior

REGULATE

The channel acts to restrict the output current to the value of the Current Limit property when the actual
output on the channel reaches or exceeds that value.

TRIP

The channel disables the output when the actual output current on the channel reaches or exceeds the value
of the Current Limit property.

DCNoiseRejection

class nidcpower.DCNoiseRejection

SECOND_ORDER

Second-order rejection of DC noise.

NORMAL

Normal rejection of DC noise.

4.1. nidcpower module 215

NI-DCPower Python API Documentation, Release 1.4.8

Event

class nidcpower.Event

SOURCE_COMPLETE

Specifies the Source Complete event.

MEASURE_COMPLETE

Specifies the Measure Complete event.

SEQUENCE_ITERATION_COMPLETE

Specifies the Sequence Iteration Complete event.

SEQUENCE_ENGINE_DONE

Specifies the Sequence Engine Done event.

PULSE_COMPLETE

Specifies the Pulse Complete event.

READY_FOR_PULSE_TRIGGER

Specifies the Ready for Pulse Trigger event.

EventOutputBehavior

class nidcpower.EventOutputBehavior

PULSE

Output generates a pulse when the event is triggered.

TOGGLE

Output toggles state when the event is triggered.

EventToggleInitialState

class nidcpower.EventToggleInitialState

LOW

The initial state is low.

HIGH

The initial state is high.

InstrumentMode

class nidcpower.InstrumentMode

SMU_PS

The channel operates as an SMU/power supply.

LCR

The channel operates as an LCR meter.

E_LOAD

The channel operates as an electronic load (E-Load).

216 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

LCRCompensationType

class nidcpower.LCRCompensationType

OPEN

Open LCR compensation.

SHORT

Short LCR compensation.

LOAD

Load LCR compensation.

OPEN_CUSTOM_CABLE

Open custom cable compensation.

SHORT_CUSTOM_CABLE

Short custom cable compensation.

LCRDCBiasSource

class nidcpower.LCRDCBiasSource

OFF

Disables DC bias in LCR mode.

VOLTAGE

Applies a constant voltage bias, as defined by the nidcpower.Session.lcr_dc_bias_voltage_level
property.

CURRENT

Applies a constant current bias, as defined by the nidcpower.Session.lcr_dc_bias_current_level
property.

LCRDCBiasTransientResponse

class nidcpower.LCRDCBiasTransientResponse

NORMAL

NI-DCPower automatically applies transient response values for DC bias.

CUSTOM

NI-DCPower applies the transient response that you set manually with nidcpower.Session.
transient_response for DC bias. Search ni.com for information on configuring transient response.

4.1. nidcpower module 217

NI-DCPower Python API Documentation, Release 1.4.8

LCRImpedanceRangeSource

class nidcpower.LCRImpedanceRangeSource

IMPEDANCE_RANGE

Uses the impedance range you specify with the nidcpower.Session.lcr_impedance_range property.

LOAD_CONFIGURATION

Computes the impedance range to select based on the values you supply to the nidcpower.Session.
lcr_load_resistance, nidcpower.Session.lcr_load_inductance, and nidcpower.Session.
lcr_load_capacitance properties. NI-DCPower uses a series model of load resistance, load inductance,
and load capacitance to compute the impedance range.

LCRMeasurementTime

class nidcpower.LCRMeasurementTime

SHORT

Uses a short aperture time for LCR measurements.

MEDIUM

Uses a medium aperture time for LCR measurements.

LONG

Uses a long aperture time for LCR measurements.

CUSTOM

Uses a custom aperture time for LCR measurements as specified by the nidcpower.Session.
lcr_custom_measurement_time property.

LCROpenShortLoadCompensationDataSource

class nidcpower.LCROpenShortLoadCompensationDataSource

ONBOARD_STORAGE

Uses previously generated LCR compensation data. Only the most recently performed compensation data
for each LCR compensation type (open, short, and load) is stored.

AS_DEFINED

Uses the LCR compensation data represented by the relevant LCR compensation prop-
erties as generated by nidcpower.Session.perform_lcr_open_compensation(),
nidcpower.Session.perform_lcr_short_compensation(), and nidcpower.Session.
perform_lcr_load_compensation(). Use this option to manage multiple sets of
LCR compensation data. This option applies compensation data from the follow-
ing properties: nidcpower.Session.lcr_open_conductance, nidcpower.Session.
lcr_open_susceptance, nidcpower.Session.lcr_short_resistance, nidcpower.Session.
lcr_short_reactance, nidcpower.Session.lcr_measured_load_resistance, nidcpower.
Session.lcr_measured_load_reactance, nidcpower.Session.lcr_actual_load_resistance,
nidcpower.Session.lcr_actual_load_reactance.

AS_CONFIGURED

Uses the LCR compensation data supplied to nidcpower.Session.configure_lcr_compensation().
Use this option to manage multiple sets of LCR compensation data.

218 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

LCRReferenceValueType

class nidcpower.LCRReferenceValueType

IMPEDANCE

The actual impedance, comprising real resistance and imaginary reactance, of your DUT. Supply resistance,
in ohms, to reference value A; supply reactance, in ohms, to reference value B.

IDEAL_CAPACITANCE

The ideal capacitance of your DUT. Supply capacitance, in farads, to reference value A.

IDEAL_INDUCTANCE

The ideal inductance of your DUT. Supply inductance, in henrys, to reference value A.

IDEAL_RESISTANCE

The ideal resistance of your DUT. Supply resistance, in ohms, to reference value A.

LCRSourceDelayMode

class nidcpower.LCRSourceDelayMode

AUTOMATIC

NI-DCPower automatically applies source delay of sufficient duration to account for settling time.

MANUAL

NI-DCPower applies the source delay that you set manually with nidcpower.Session.source_delay.
You can use this option to set a shorter delay to reduce measurement time at the possible expense of mea-
surement accuracy.

LCRStimulusFunction

class nidcpower.LCRStimulusFunction

VOLTAGE

Applies an AC voltage for LCR stimulus.

CURRENT

Applies an AC current for LCR stimulus.

MeasureWhen

class nidcpower.MeasureWhen

AUTOMATICALLY_AFTER_SOURCE_COMPLETE

Acquires a measurement after each Source Complete event completes.

ON_DEMAND

Acquires a measurement when the nidcpower.Session.measure() method or nidcpower.Session.
measure_multiple() method is called.

ON_MEASURE_TRIGGER

Acquires a measurement when a Measure trigger is received.

4.1. nidcpower module 219

NI-DCPower Python API Documentation, Release 1.4.8

MeasurementTypes

class nidcpower.MeasurementTypes

CURRENT

The device measures current.

VOLTAGE

The device measures voltage.

OutputCapacitance

class nidcpower.OutputCapacitance

LOW

Output Capacitance is low.

HIGH

Output Capacitance is high.

OutputCutoffReason

class nidcpower.OutputCutoffReason

ALL

Queries any output cutoff condition; clears all output cutoff conditions.

VOLTAGE_OUTPUT_HIGH

Queries or clears cutoff conditions when the output exceeded the high cutoff limit for voltage output.

VOLTAGE_OUTPUT_LOW

Queries or clears cutoff conditions when the output fell below the low cutoff limit for voltage output.

CURRENT_MEASURE_HIGH

Queries or clears cutoff conditions when the measured current exceeded the high cutoff limit for current
output.

CURRENT_MEASURE_LOW

Queries or clears cutoff conditions when the measured current fell below the low cutoff limit for current
output.

VOLTAGE_CHANGE_HIGH

Queries or clears cutoff conditions when the voltage slew rate increased beyond the positive change cutoff
for voltage output.

VOLTAGE_CHANGE_LOW

Queries or clears cutoff conditions when the voltage slew rate decreased beyond the negative change cutoff
for voltage output.

CURRENT_CHANGE_HIGH

Queries or clears cutoff conditions when the current slew rate increased beyond the positive change cutoff
for current output.

220 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

CURRENT_CHANGE_LOW

Queries or clears cutoff conditions when the current slew rate decreased beyond the negative change cutoff
for current output.

CURRENT_SATURATED

Queries or clears cutoff conditions when the measured current saturates the current range.

VOLTAGE_MEASURE_HIGH

Queries or clears cutoff conditions when the measured voltage exceeded the high cutoff limit for voltage
output.

VOLTAGE_MEASURE_LOW

Queries or clears cutoff conditions when the measured voltage fell below the low cutoff limit for voltage
output.

OutputFunction

class nidcpower.OutputFunction

DC_VOLTAGE

Sets the output method to DC voltage.

DC_CURRENT

Sets the output method to DC current.

PULSE_VOLTAGE

Sets the output method to pulse voltage.

PULSE_CURRENT

Sets the output method to pulse current.

OutputStates

class nidcpower.OutputStates

VOLTAGE

The channel maintains a constant voltage by adjusting the current.

CURRENT

The channel maintains a constant current by adjusting the voltage.

Polarity

class nidcpower.Polarity

HIGH

A high pulse occurs when the event is generated. The exported signal is low level both before and after the
event is generated.

LOW

A low pulse occurs when the event is generated. The exported signal is high level both before and after the
event is generated.

4.1. nidcpower module 221

NI-DCPower Python API Documentation, Release 1.4.8

PowerAllocationMode

class nidcpower.PowerAllocationMode

DISABLED

The device attempts to source, on each active channel, the power that the present source configuration
requires; NI-DCPower does not perform a sourcing power check. If the required power is greater than the
maximum sourcing power, the device attempts to source the required amount and may shut down to prevent
damage.

AUTOMATIC

The device attempts to source, on each active channel, the power that the present source configuration
requires; NI-DCPower performs a sourcing power check. If the required power is greater than the maximum
sourcing power, the device does not exceed the maximum power, and NI-DCPower returns an error.

MANUAL

The device attempts to source, on each active channel, the power you request with the nidcpower.
Session.requested_power_allocation property; NI-DCPower performs a sourcing power check. If
the requested power is either less than the required power for the present source configuration or greater
than the maximum sourcing power, the device does not exceed the requested or allowed power, respectively,
and NI-DCPower returns an error.

PowerSource

class nidcpower.PowerSource

INTERNAL

Uses the PXI chassis power source.

AUXILIARY

Uses the auxiliary power source connected to the device.

AUTOMATIC

Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourceInUse

class nidcpower.PowerSourceInUse

INTERNAL

Uses the PXI chassis power source.

AUXILIARY

Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-
4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI
PXIe-4113.

222 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

SelfCalibrationPersistence

class nidcpower.SelfCalibrationPersistence

KEEP_IN_MEMORY

Keep new self calibration values in memory only.

WRITE_TO_EEPROM

Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

class nidcpower.SendSoftwareEdgeTriggerType

START

Asserts the Start trigger.

SOURCE

Asserts the Source trigger.

MEASURE

Asserts the Measure trigger.

SEQUENCE_ADVANCE

Asserts the Sequence Advance trigger.

PULSE

Asserts the Pulse trigger.

SHUTDOWN

Asserts the Shutdown trigger.

Sense

class nidcpower.Sense

LOCAL

Local sensing is selected.

REMOTE

Remote sensing is selected.

SourceMode

class nidcpower.SourceMode

SINGLE_POINT

The source unit applies a single source configuration.

SEQUENCE

The source unit applies a list of voltage or current configurations sequentially.

4.1. nidcpower module 223

NI-DCPower Python API Documentation, Release 1.4.8

TransientResponse

class nidcpower.TransientResponse

NORMAL

The output responds to changes in load at a normal speed.

FAST

The output responds to changes in load quickly.

SLOW

The output responds to changes in load slowly.

CUSTOM

The output responds to changes in load based on specified values.

TriggerType

class nidcpower.TriggerType

NONE

No trigger is configured.

DIGITAL_EDGE

The data operation starts when a digital edge is detected.

SOFTWARE_EDGE

The data operation starts when a software trigger occurs.

Exceptions and Warnings

Error

exception nidcpower.errors.Error

Base exception type that all NI-DCPower exceptions derive from

DriverError

exception nidcpower.errors.DriverError

An error originating from the NI-DCPower driver

UnsupportedConfigurationError

exception nidcpower.errors.UnsupportedConfigurationError

An error due to using this module in an usupported platform.

224 Chapter 4. Bugs / Feature Requests

NI-DCPower Python API Documentation, Release 1.4.8

DriverNotInstalledError

exception nidcpower.errors.DriverNotInstalledError

An error due to using this module without the driver runtime installed.

DriverTooOldError

exception nidcpower.errors.DriverTooOldError

An error due to using this module with an older version of the NI-DCPower driver runtime.

DriverTooNewError

exception nidcpower.errors.DriverTooNewError

An error due to the NI-DCPower driver runtime being too new for this module.

InvalidRepeatedCapabilityError

exception nidcpower.errors.InvalidRepeatedCapabilityError

An error due to an invalid character in a repeated capability

SelfTestError

exception nidcpower.errors.SelfTestError

An error due to a failed self-test

RpcError

exception nidcpower.errors.RpcError

An error specific to sessions to the NI gRPC Device Server

DriverWarning

exception nidcpower.errors.DriverWarning

A warning originating from the NI-DCPower driver

Examples

You can download all nidcpower examples here

4.1. nidcpower module 225

https://github.com/ni/nimi-python/releases/download/1.4.8/nidcpower_examples.zip

NI-DCPower Python API Documentation, Release 1.4.8

nidcpower_advanced_sequence.py

Listing 1: (nidcpower_advanced_sequence.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import nidcpower
6 import sys
7

8

9 def example(resource_name, options, voltage_max, current_max, points_per_output_function,
→˓ source_delay):

10 with nidcpower.Session(resource_name=resource_name, options=options) as session:
11 # Configure the session.
12 session.source_mode = nidcpower.SourceMode.SEQUENCE
13 session.voltage_level_autorange = True
14 session.current_limit_autorange = True
15 session.source_delay = hightime.timedelta(seconds=source_delay)
16 properties_used = ['output_function', 'voltage_level', 'current_level']
17 session.create_advanced_sequence(sequence_name='my_sequence', property_

→˓names=properties_used, set_as_active_sequence=True)
18

19 voltage_per_step = voltage_max / points_per_output_function
20 for i in range(points_per_output_function):
21 session.create_advanced_sequence_step(set_as_active_step=False)
22 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
23 session.voltage_level = voltage_per_step * i
24

25 current_per_step = current_max / points_per_output_function
26 for i in range(points_per_output_function):
27 session.create_advanced_sequence_step(set_as_active_step=False)
28 session.output_function = nidcpower.OutputFunction.DC_CURRENT
29 session.current_level = current_per_step * i
30

31 # Calculate the timeout.
32 aperture_time = session.aperture_time
33 total_points = points_per_output_function * 2
34 timeout = hightime.timedelta(seconds=((source_delay + aperture_time) * total_

→˓points + 1.0))
35

36 with session.initiate():
37 channel_indices = f'0-{session.channel_count - 1}'
38 channels = session.get_channel_names(channel_indices)
39 measurement_group = [session.channels[name].fetch_multiple(total_points,␣

→˓timeout=timeout) for name in channels]
40

41 session.delete_advanced_sequence(sequence_name='my_sequence')
42 line_format = '{:<15} {:<4} {:<10} {:<10} {:<6}'
43 print(line_format.format('Channel', 'Num', 'Voltage', 'Current', 'In Compliance

→˓'))
44 for i, measurements in enumerate(measurement_group):

(continues on next page)

226 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.8/src/nidcpower/examples/nidcpower_advanced_sequence.py

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

45 num = 0
46 channel_name = channels[i].strip()
47 for measurement in measurements:
48 print(line_format.format(channel_name, num, measurement.voltage,␣

→˓measurement.current, str(measurement.in_compliance)))
49 num += 1
50

51

52 def _main(argsv):
53 parser = argparse.ArgumentParser(description='Output ramping voltage to voltage max,␣

→˓then ramping current to current max.', formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

54 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',␣
→˓help='Resource names of NI SMUs.')

55 parser.add_argument('-s', '--number-steps', default=256, type=int, help='Number of␣
→˓steps per output function')

56 parser.add_argument('-v', '--voltage-max', default=1.0, type=float, help='Maximum␣
→˓voltage (V)')

57 parser.add_argument('-i', '--current-max', default=0.001, type=float, help='Maximum␣
→˓Current (I)')

58 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)
→˓')

59 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣
→˓string')

60 args = parser.parse_args(argsv)
61 example(args.resource_name, args.option_string, args.voltage_max, args.current_max,␣

→˓args.number_steps, args.delay)
62

63

64 def main():
65 _main(sys.argv[1:])
66

67

68 def test_main():
69 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',␣

→˓]
70 _main(cmd_line)
71

72

73 def test_example():
74 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }

→˓, }
75 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 0.001, 256, 0.05)
76

77

78 if __name__ == '__main__':
79 main()
80

81

4.1. nidcpower module 227

NI-DCPower Python API Documentation, Release 1.4.8

nidcpower_lcr_source_ac_voltage.py

Listing 2: (nidcpower_lcr_source_ac_voltage.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidcpower
5 import sys
6

7

8 def example(
9 resource_name,

10 options,
11 lcr_frequency,
12 lcr_impedance_range,
13 cable_length,
14 lcr_voltage_rms,
15 lcr_dc_bias_source,
16 lcr_dc_bias_voltage_level,
17 lcr_measurement_time,
18 lcr_custom_measurement_time,
19 lcr_source_delay_mode,
20 source_delay,
21):
22 with nidcpower.Session(resource_name=resource_name, options=options) as session:
23 # Configure the session.
24 session.instrument_mode = nidcpower.InstrumentMode.LCR
25 session.lcr_stimulus_function = nidcpower.LCRStimulusFunction.VOLTAGE
26 session.lcr_frequency = lcr_frequency
27 session.lcr_impedance_range = lcr_impedance_range
28 session.cable_length = cable_length
29 session.lcr_voltage_amplitude = lcr_voltage_rms
30 session.lcr_dc_bias_source = lcr_dc_bias_source
31 session.lcr_dc_bias_voltage_level = lcr_dc_bias_voltage_level
32 session.lcr_measurement_time = lcr_measurement_time
33 session.lcr_custom_measurement_time = lcr_custom_measurement_time
34 session.lcr_source_delay_mode = lcr_source_delay_mode
35 session.source_delay = source_delay
36

37 with session.initiate():
38 # Low frequencies require longer settling times than the default timeout for
39 # wait_for_event(), hence 5.0s is set here as a reasonable timeout value
40 session.wait_for_event(event_id=nidcpower.Event.SOURCE_COMPLETE, timeout=5.0)
41 measurements = session.measure_multiple_lcr()
42 for measurement in measurements:
43 print(measurement)
44

45 session.reset()
46

47

48 def _main(argsv):
49 parser = argparse.ArgumentParser(

(continues on next page)

228 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.8/src/nidcpower/examples/nidcpower_lcr_source_ac_voltage.py

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

50 description='Output the specified AC voltage and DC bias voltage, then takes LCR␣
→˓measurements',

51 formatter_class=argparse.ArgumentDefaultsHelpFormatter
52)
53 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0', help='Resource␣

→˓names of NI SMUs')
54 parser.add_argument('-f', '--lcr-frequency', default=10.0e3, type=float, help='LCR␣

→˓frequency (Hz)')
55 parser.add_argument('-i', '--lcr-impedance-range', default=100.0, type=float, help=

→˓'LCR impedance range ()')
56 parser.add_argument('-c', '--cable-length', default='NI_STANDARD_2M', type=str,␣

→˓choices=tuple(nidcpower.CableLength.__members__.keys()), help='Cable length')
57 parser.add_argument('-v', '--lcr-voltage-rms', default=700.0e-3, type=float, help=

→˓'LCR voltage RMS (V RMS)')
58 parser.add_argument('-d', '--lcr-dc-bias-source', default='OFF', type=str,␣

→˓choices=tuple(nidcpower.LCRDCBiasSource.__members__.keys()), help='LCR DC bias source')
59 parser.add_argument('-dv', '--lcr-dc-bias-voltage_level', default=0.0, type=float,␣

→˓help='LCR DC bias voltage (V)')
60 parser.add_argument('-t', '--lcr-measurement-time', default='MEDIUM', type=str,␣

→˓choices=tuple(nidcpower.LCRMeasurementTime.__members__.keys()), help='LCR measurement␣
→˓time')

61 parser.add_argument('-ct', '--lcr-custom-measurement-time', default=10.0e-3,␣
→˓type=float, help='LCR custom measurement time (s)')

62 parser.add_argument('-sm', '--lcr-source-delay-mode', default='AUTOMATIC', type=str,␣
→˓choices=tuple(nidcpower.LCRSourceDelayMode.__members__.keys()), help='LCR source delay␣
→˓mode')

63 parser.add_argument('-s', '--source-delay', default=16.66e-3, type=float, help=
→˓'Source delay (s)')

64 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣
→˓string')

65 args = parser.parse_args(argsv)
66 example(
67 resource_name=args.resource_name,
68 options=args.option_string,
69 lcr_frequency=args.lcr_frequency,
70 lcr_impedance_range=args.lcr_impedance_range,
71 cable_length=getattr(nidcpower.CableLength, args.cable_length),
72 lcr_voltage_rms=args.lcr_voltage_rms,
73 lcr_dc_bias_source=getattr(nidcpower.LCRDCBiasSource, args.lcr_dc_bias_source),
74 lcr_dc_bias_voltage_level=args.lcr_dc_bias_voltage_level,
75 lcr_measurement_time=getattr(nidcpower.LCRMeasurementTime, args.lcr_measurement_

→˓time),
76 lcr_custom_measurement_time=args.lcr_custom_measurement_time,
77 lcr_source_delay_mode=getattr(nidcpower.LCRSourceDelayMode, args.lcr_source_

→˓delay_mode),
78 source_delay=args.source_delay,
79)
80

81

82 def main():
83 _main(sys.argv[1:])
84

(continues on next page)

4.1. nidcpower module 229

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

85

86 def test_example():
87 example(
88 resource_name='PXI1Slot2/0',
89 options={'simulate': True, 'driver_setup': {'Model': '4190', 'BoardType': 'PXIe',

→˓ }, },
90 lcr_frequency=10.0e3,
91 lcr_impedance_range=100.0,
92 cable_length=nidcpower.CableLength.NI_STANDARD_2M,
93 lcr_voltage_rms=700.0e-3,
94 lcr_dc_bias_source=nidcpower.LCRDCBiasSource.OFF,
95 lcr_dc_bias_voltage_level=0.0,
96 lcr_measurement_time=nidcpower.LCRMeasurementTime.MEDIUM,
97 lcr_custom_measurement_time=10.0e-3,
98 lcr_source_delay_mode=nidcpower.LCRSourceDelayMode.AUTOMATIC,
99 source_delay=16.66e-3,

100)
101

102

103 def test_main():
104 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4190; BoardType:PXIe',␣

→˓]
105 _main(cmd_line)
106

107

108 if __name__ == '__main__':
109 main()

nidcpower_measure_record.py

Listing 3: (nidcpower_measure_record.py)

1 #!/usr/bin/python
2

3 import argparse
4 import nidcpower
5 import sys
6

7

8 def example(resource_name, options, voltage, length):
9 with nidcpower.Session(resource_name=resource_name, options=options) as session:

10 # Configure the session.
11 session.measure_record_length = length
12 session.measure_record_length_is_finite = True
13 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
14 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
15 session.voltage_level = voltage
16

17 session.commit()
18 print(f'Effective measurement rate: {session.measure_record_delta_time / 1} S/s')

(continues on next page)

230 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.8/src/nidcpower/examples/nidcpower_measure_record.py

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

19

20 print('Channel Num Voltage Current In Compliance')
21 row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
22 with session.initiate():
23 channel_indices = f'0-{session.channel_count - 1}'
24 channels = session.get_channel_names(channel_indices)
25 for i, channel_name in enumerate(channels):
26 samples_acquired = 0
27 while samples_acquired < length:
28 measurements = session.channels[channel_name].fetch_

→˓multiple(count=session.fetch_backlog)
29 samples_acquired += len(measurements)
30 for i in range(len(measurements)):
31 print(row_format.format(channel_name, i, measurements[i].voltage,

→˓ measurements[i].current, measurements[i].in_compliance))
32

33

34 def _main(argsv):
35 parser = argparse.ArgumentParser(description='Outputs the specified voltage, then␣

→˓takes the specified number of voltage and current readings.', formatter_class=argparse.
→˓ArgumentDefaultsHelpFormatter)

36 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',␣
→˓help='Resource names of NI SMUs.')

37 parser.add_argument('-l', '--length', default='20', type=int, help='Measure record␣
→˓length per channel')

38 parser.add_argument('-v', '--voltage', default=5.0, type=float, help='Voltage level␣
→˓(V)')

39 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣
→˓string')

40 args = parser.parse_args(argsv)
41 example(args.resource_name, args.option_string, args.voltage, args.length)
42

43

44 def main():
45 _main(sys.argv[1:])
46

47

48 def test_example():
49 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }

→˓, }
50 example('PXI1Slot2/0, PXI1Slot3/1', options, 5.0, 20)
51

52

53 def test_main():
54 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',␣

→˓]
55 _main(cmd_line)
56

57

58 if __name__ == '__main__':
59 main()

4.1. nidcpower module 231

NI-DCPower Python API Documentation, Release 1.4.8

nidcpower_source_delay_measure.py

Listing 4: (nidcpower_source_delay_measure.py)

1 #!/usr/bin/python
2

3 import argparse
4 import hightime
5 import nidcpower
6 import sys
7

8

9 def print_fetched_measurements(measurements):
10 print(f' Voltage : {measurements[0].voltage:f} V')
11 print(f' Current: {measurements[0].current:f} A')
12 print(f' In compliance: {measurements[0].in_compliance}')
13

14

15 def example(resource_name, options, voltage1, voltage2, delay):
16 timeout = hightime.timedelta(seconds=(delay + 1.0))
17

18 with nidcpower.Session(resource_name=resource_name, options=options) as session:
19 # Configure the session.
20 session.source_mode = nidcpower.SourceMode.SINGLE_POINT
21 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
22 session.current_limit = .06
23 session.voltage_level_range = 5.0
24 session.current_limit_range = .06
25 session.source_delay = hightime.timedelta(seconds=delay)
26 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
27 session.voltage_level = voltage1
28

29 with session.initiate():
30 channel_indices = f'0-{session.channel_count - 1}'
31 channels = session.get_channel_names(channel_indices)
32 for channel_name in channels:
33 print(f'Channel: {channel_name}')
34 print('---------------------------------')
35 print('Voltage 1:')
36 print_fetched_measurements(session.channels[channel_name].fetch_

→˓multiple(count=1, timeout=timeout))
37 session.voltage_level = voltage2 # on-the-fly set
38 print('Voltage 2:')
39 print_fetched_measurements(session.channels[channel_name].fetch_

→˓multiple(count=1, timeout=timeout))
40 session.output_enabled = False
41 print('')
42

43

44 def _main(argsv):
45 parser = argparse.ArgumentParser(description='Outputs voltage 1, waits for source␣

→˓delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_
→˓class=argparse.ArgumentDefaultsHelpFormatter)

(continues on next page)

232 Chapter 4. Bugs / Feature Requests

https://github.com/ni/nimi-python/blob/1.4.8/src/nidcpower/examples/nidcpower_source_delay_measure.py

NI-DCPower Python API Documentation, Release 1.4.8

(continued from previous page)

46 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1',␣
→˓help='Resource names of an NI SMUs.')

47 parser.add_argument('-v1', '--voltage1', default=1.0, type=float, help='Voltage␣
→˓level 1 (V)')

48 parser.add_argument('-v2', '--voltage2', default=2.0, type=float, help='Voltage␣
→˓level 2 (V)')

49 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)
→˓')

50 parser.add_argument('-op', '--option-string', default='', type=str, help='Option␣
→˓string')

51 args = parser.parse_args(argsv)
52 example(args.resource_name, args.option_string, args.voltage1, args.voltage2, args.

→˓delay)
53

54

55 def main():
56 _main(sys.argv[1:])
57

58

59 def test_main():
60 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',␣

→˓]
61 _main(cmd_line)
62

63

64 def test_example():
65 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }

→˓, }
66 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 2.0, 0.05)
67

68

69 if __name__ == '__main__':
70 main()
71

72

gRPC Support

Support for using NI-DCPower over gRPC

SessionInitializationBehavior

class nidcpower.SessionInitializationBehavior

AUTO

The NI gRPC Device Server will attach to an existing session with the specified name if it exists, otherwise
the server will initialize a new session.

Note: When using the Session as a context manager and the context exits, the behavior depends on what
happened when the constructor was called. If it resulted in a new session being initialized on the NI gRPC

4.1. nidcpower module 233

NI-DCPower Python API Documentation, Release 1.4.8

Device Server, then it will automatically close the server session. If it instead attached to an existing session,
then it will detach from the server session and leave it open.

INITIALIZE_SERVER_SESSION

Require the NI gRPC Device Server to initialize a new session with the specified name.

Note: When using the Session as a context manager and the context exits, it will automatically close the
server session.

ATTACH_TO_SERVER_SESSION

Require the NI gRPC Device Server to attach to an existing session with the specified name.

Note: When using the Session as a context manager and the context exits, it will detach from the server
session and leave it open.

GrpcSessionOptions

class nidcpower.GrpcSessionOptions(self , grpc_channel, session_name,
initialization_behavior=SessionInitializationBehavior.AUTO)

Collection of options that specifies session behaviors related to gRPC.

Creates and returns an object you can pass to a Session constructor.

Parameters

• grpc_channel (grpc.Channel) – Specifies the channel to the NI gRPC Device Server.

• session_name (str) – User-specified name that identifies the driver session on the NI gRPC
Device Server.

This is different from the resource name parameter many APIs take as a separate parameter.
Specifying a name makes it easy to share sessions across multiple gRPC clients. You can
use an empty string if you want to always initialize a new session on the server. To attach to
an existing session, you must specify the session name it was initialized with.

• initialization_behavior (nidcpower.SessionInitializationBehavior) –
Specifies whether it is acceptable to initialize a new session or attach to an existing one, or
if only one of the behaviors is desired.

The driver session exists on the NI gRPC Device Server.

4.2 Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

Refer to the nimi-python Read the Docs project for documentation of versions 1.4.4 of the module or earlier.

234 Chapter 4. Bugs / Feature Requests

https://docs.python.org/3/library/stdtypes.html#str
https://nimi-python.readthedocs.io/en/stable/

CHAPTER

FIVE

LICENSE

nimi-python is licensed under an MIT-style license (see LICENSE). Other incorporated projects may be licensed under
different licenses. All licenses allow for non-commercial and commercial use.

gRPC Features

For driver APIs that support it, passing a GrpcSessionOptions instance as a parameter to Session.__init__() is subject
to the NI General Purpose EULA (see NILICENSE).

235

https://github.com/ni/nimi-python/blob/master/LICENSE
https://github.com/ni/nimi-python/blob/master/NILICENSE

NI-DCPower Python API Documentation, Release 1.4.8

236 Chapter 5. License

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

237

NI-DCPower Python API Documentation, Release 1.4.8

238 Chapter 6. Indices and tables

PYTHON MODULE INDEX

n
nidcpower, 8

239

NI-DCPower Python API Documentation, Release 1.4.8

240 Python Module Index

INDEX

A
abort() (in module nidcpower.Session), 10
active_advanced_sequence (in module nid-

cpower.Session), 48
active_advanced_sequence_step (in module nid-

cpower.Session), 48
actual_power_allocation (in module nid-

cpower.Session), 49
ALL (nidcpower.OutputCutoffReason attribute), 220
aperture_time (in module nidcpower.Session), 50
aperture_time_auto_mode (in module nid-

cpower.Session), 51
aperture_time_units (in module nidcpower.Session),

51
ApertureTimeAutoMode (class in nidcpower), 212
ApertureTimeUnits (class in nidcpower), 212
AS_CONFIGURED (nidcpower.LCROpenShortLoadCompensationDataSource

attribute), 218
AS_DEFINED (nidcpower.LCROpenShortLoadCompensationDataSource

attribute), 218
ASYMMETRIC (nidcpower.ComplianceLimitSymmetry at-

tribute), 215
ATTACH_TO_SERVER_SESSION (nid-

cpower.SessionInitializationBehavior at-
tribute), 234

AUTO (nidcpower.AutorangeApertureTimeMode at-
tribute), 213

AUTO (nidcpower.SessionInitializationBehavior attribute),
233

auto_zero (in module nidcpower.Session), 58
AUTOMATIC (nidcpower.ConductionVoltageMode at-

tribute), 215
AUTOMATIC (nidcpower.LCRSourceDelayMode at-

tribute), 219
AUTOMATIC (nidcpower.PowerAllocationMode attribute),

222
AUTOMATIC (nidcpower.PowerSource attribute), 222
AUTOMATICALLY_AFTER_SOURCE_COMPLETE (nid-

cpower.MeasureWhen attribute), 219
autorange (in module nidcpower.Session), 52
autorange_aperture_time_mode (in module nid-

cpower.Session), 53

autorange_behavior (in module nidcpower.Session),
53

autorange_maximum_delay_after_range_change
(in module nidcpower.Session), 54

autorange_minimum_aperture_time (in module nid-
cpower.Session), 55

autorange_minimum_aperture_time_units (in mod-
ule nidcpower.Session), 56

autorange_minimum_current_range (in module nid-
cpower.Session), 56

autorange_minimum_voltage_range (in module nid-
cpower.Session), 57

autorange_threshold_mode (in module nid-
cpower.Session), 58

AutorangeApertureTimeMode (class in nidcpower),
213

AutorangeBehavior (class in nidcpower), 213
AutorangeThresholdMode (class in nidcpower), 213
AutoZero (class in nidcpower), 213
AUXILIARY (nidcpower.PowerSource attribute), 222
AUXILIARY (nidcpower.PowerSourceInUse attribute),

222
auxiliary_power_source_available (in module nid-

cpower.Session), 59

C
cable_length (in module nidcpower.Session), 60
CableLength (class in nidcpower), 214
channel_count (in module nidcpower.Session), 60
channels (nidcpower.Session.nidcpower.Session at-

tribute), 211
clear_latched_output_cutoff_state() (in module

nidcpower.Session), 10
close() (in module nidcpower.Session), 11
commit() (in module nidcpower.Session), 12
compliance_limit_symmetry (in module nid-

cpower.Session), 61
ComplianceLimitSymmetry (class in nidcpower), 215
conduction_voltage_mode (in module nid-

cpower.Session), 62
conduction_voltage_off_threshold (in module nid-

cpower.Session), 63

241

NI-DCPower Python API Documentation, Release 1.4.8

conduction_voltage_on_threshold (in module nid-
cpower.Session), 63

ConductionVoltageMode (class in nidcpower), 215
configure_aperture_time() (in module nid-

cpower.Session), 12
configure_lcr_compensation() (in module nid-

cpower.Session), 13
configure_lcr_custom_cable_compensation() (in

module nidcpower.Session), 14
create_advanced_sequence() (in module nid-

cpower.Session), 14
create_advanced_sequence_commit_step() (in

module nidcpower.Session), 17
create_advanced_sequence_step() (in module nid-

cpower.Session), 18
CURRENT (nidcpower.LCRDCBiasSource attribute), 217
CURRENT (nidcpower.LCRStimulusFunction attribute),

219
CURRENT (nidcpower.MeasurementTypes attribute), 220
CURRENT (nidcpower.OutputStates attribute), 221
CURRENT_CHANGE_HIGH (nid-

cpower.OutputCutoffReason attribute), 220
CURRENT_CHANGE_LOW (nidcpower.OutputCutoffReason

attribute), 220
current_compensation_frequency (in module nid-

cpower.Session), 64
current_gain_bandwidth (in module nid-

cpower.Session), 65
current_level (in module nidcpower.Session), 65
current_level_autorange (in module nid-

cpower.Session), 66
current_level_falling_slew_rate (in module nid-

cpower.Session), 67
current_level_range (in module nidcpower.Session),

68
current_level_rising_slew_rate (in module nid-

cpower.Session), 68
current_limit (in module nidcpower.Session), 69
current_limit_autorange (in module nid-

cpower.Session), 70
current_limit_behavior (in module nid-

cpower.Session), 71
current_limit_high (in module nidcpower.Session),

71
current_limit_low (in module nidcpower.Session), 72
current_limit_range (in module nidcpower.Session),

73
CURRENT_MEASURE_HIGH (nid-

cpower.OutputCutoffReason attribute), 220
CURRENT_MEASURE_LOW (nid-

cpower.OutputCutoffReason attribute), 220
current_pole_zero_ratio (in module nid-

cpower.Session), 74
CURRENT_SATURATED (nidcpower.OutputCutoffReason

attribute), 221
CurrentLimitBehavior (class in nidcpower), 215
CUSTOM (nidcpower.AutorangeApertureTimeMode at-

tribute), 213
CUSTOM (nidcpower.LCRDCBiasTransientResponse at-

tribute), 217
CUSTOM (nidcpower.LCRMeasurementTime attribute),

218
CUSTOM (nidcpower.TransientResponse attribute), 224
CUSTOM_AS_CONFIGURED (nidcpower.CableLength at-

tribute), 214
CUSTOM_ONBOARD_STORAGE (nidcpower.CableLength at-

tribute), 214

D
DC_CURRENT (nidcpower.OutputFunction attribute), 221
dc_noise_rejection (in module nidcpower.Session),

74
DC_VOLTAGE (nidcpower.OutputFunction attribute), 221
DCNoiseRejection (class in nidcpower), 215
delete_advanced_sequence() (in module nid-

cpower.Session), 19
DIGITAL_EDGE (nidcpower.TriggerType attribute), 224
digital_edge_measure_trigger_input_terminal

(in module nidcpower.Session), 75
digital_edge_pulse_trigger_input_terminal (in

module nidcpower.Session), 76
digital_edge_sequence_advance_trigger_input_terminal

(in module nidcpower.Session), 77
digital_edge_shutdown_trigger_input_terminal

(in module nidcpower.Session), 77
digital_edge_source_trigger_input_terminal

(in module nidcpower.Session), 78
digital_edge_start_trigger_input_terminal (in

module nidcpower.Session), 79
disable() (in module nidcpower.Session), 19
DISABLED (nidcpower.ConductionVoltageMode at-

tribute), 215
DISABLED (nidcpower.PowerAllocationMode attribute),

222
driver_setup (in module nidcpower.Session), 80
DriverError, 224
DriverNotInstalledError, 225
DriverTooNewError, 225
DriverTooOldError, 225
DriverWarning, 225

E
E_LOAD (nidcpower.InstrumentMode attribute), 216
ENABLED (nidcpower.ConductionVoltageMode attribute),

215
Error, 224
Event (class in nidcpower), 216
EventOutputBehavior (class in nidcpower), 216

242 Index

NI-DCPower Python API Documentation, Release 1.4.8

EventToggleInitialState (class in nidcpower), 216
export_attribute_configuration_buffer() (in

module nidcpower.Session), 20
export_attribute_configuration_file() (in mod-

ule nidcpower.Session), 20
exported_measure_trigger_output_terminal (in

module nidcpower.Session), 80
exported_pulse_trigger_output_terminal (in

module nidcpower.Session), 81
exported_sequence_advance_trigger_output_terminal

(in module nidcpower.Session), 82
exported_source_trigger_output_terminal (in

module nidcpower.Session), 82
exported_start_trigger_output_terminal (in

module nidcpower.Session), 83

F
FAST (nidcpower.TransientResponse attribute), 224
FAST_STEP (nidcpower.AutorangeThresholdMode

attribute), 213
fetch_backlog (in module nidcpower.Session), 84
fetch_multiple() (in module nidcpower.Session), 21
fetch_multiple_lcr() (in module nid-

cpower.Session), 22

G
get_channel_name() (in module nidcpower.Session),

24
get_channel_names() (in module nidcpower.Session),

25
get_ext_cal_last_date_and_time() (in module nid-

cpower.Session), 25
get_ext_cal_last_temp() (in module nid-

cpower.Session), 25
get_ext_cal_recommended_interval() (in module

nidcpower.Session), 26
get_lcr_compensation_data() (in module nid-

cpower.Session), 26
get_lcr_compensation_last_date_and_time() (in

module nidcpower.Session), 26
get_lcr_custom_cable_compensation_data() (in

module nidcpower.Session), 27
get_self_cal_last_date_and_time() (in module

nidcpower.Session), 28
get_self_cal_last_temp() (in module nid-

cpower.Session), 28
GrpcSessionOptions (class in nidcpower), 234

H
HIGH (nidcpower.EventToggleInitialState attribute), 216
HIGH (nidcpower.OutputCapacitance attribute), 220
HIGH (nidcpower.Polarity attribute), 221

HIGH_HYSTERESIS (nid-
cpower.AutorangeThresholdMode attribute),
213

HOLD (nidcpower.AutorangeThresholdMode attribute),
214

I
IDEAL_CAPACITANCE (nid-

cpower.LCRReferenceValueType attribute),
219

IDEAL_INDUCTANCE (nid-
cpower.LCRReferenceValueType attribute),
219

IDEAL_RESISTANCE (nid-
cpower.LCRReferenceValueType attribute),
219

IMPEDANCE (nidcpower.LCRReferenceValueType at-
tribute), 219

IMPEDANCE_RANGE (nid-
cpower.LCRImpedanceRangeSource attribute),
218

import_attribute_configuration_buffer() (in
module nidcpower.Session), 28

import_attribute_configuration_file() (in mod-
ule nidcpower.Session), 29

INITIALIZE_SERVER_SESSION (nid-
cpower.SessionInitializationBehavior at-
tribute), 234

initiate() (in module nidcpower.Session), 30
instrument_firmware_revision (in module nid-

cpower.Session), 85
instrument_manufacturer (in module nid-

cpower.Session), 85
instrument_mode (in module nidcpower.Session), 86
instrument_model (in module nidcpower.Session), 86
InstrumentMode (class in nidcpower), 216
instruments (nidcpower.Session.nidcpower.Session at-

tribute), 212
interlock_input_open (in module nid-

cpower.Session), 87
INTERNAL (nidcpower.PowerSource attribute), 222
INTERNAL (nidcpower.PowerSourceInUse attribute), 222
InvalidRepeatedCapabilityError, 225
io_resource_descriptor (in module nid-

cpower.Session), 88
isolation_state (in module nidcpower.Session), 88

K
KEEP_IN_MEMORY (nidcpower.SelfCalibrationPersistence

attribute), 223

L
LCR (nidcpower.InstrumentMode attribute), 216

Index 243

NI-DCPower Python API Documentation, Release 1.4.8

lcr_ac_dither_enabled (in module nid-
cpower.Session), 90

lcr_ac_electrical_cable_length_delay (in mod-
ule nidcpower.Session), 91

lcr_actual_load_reactance (in module nid-
cpower.Session), 89

lcr_actual_load_resistance (in module nid-
cpower.Session), 89

lcr_automatic_level_control (in module nid-
cpower.Session), 92

lcr_current_amplitude (in module nid-
cpower.Session), 92

lcr_current_range (in module nidcpower.Session), 93
lcr_custom_measurement_time (in module nid-

cpower.Session), 94
lcr_dc_bias_automatic_level_control (in module

nidcpower.Session), 94
lcr_dc_bias_current_level (in module nid-

cpower.Session), 95
lcr_dc_bias_current_range (in module nid-

cpower.Session), 96
lcr_dc_bias_source (in module nidcpower.Session),

97
lcr_dc_bias_transient_response (in module nid-

cpower.Session), 97
lcr_dc_bias_voltage_level (in module nid-

cpower.Session), 98
lcr_dc_bias_voltage_range (in module nid-

cpower.Session), 99
lcr_frequency (in module nidcpower.Session), 99
lcr_impedance_auto_range (in module nid-

cpower.Session), 100
lcr_impedance_range (in module nidcpower.Session),

101
lcr_impedance_range_source (in module nid-

cpower.Session), 102
lcr_load_capacitance (in module nid-

cpower.Session), 102
lcr_load_compensation_enabled (in module nid-

cpower.Session), 103
lcr_load_inductance (in module nidcpower.Session),

104
lcr_load_resistance (in module nidcpower.Session),

105
lcr_measured_load_reactance (in module nid-

cpower.Session), 105
lcr_measured_load_resistance (in module nid-

cpower.Session), 106
lcr_measurement_time (in module nid-

cpower.Session), 107
lcr_open_compensation_enabled (in module nid-

cpower.Session), 107
lcr_open_conductance (in module nid-

cpower.Session), 108

lcr_open_short_load_compensation_data_source
(in module nidcpower.Session), 109

lcr_open_susceptance (in module nid-
cpower.Session), 109

lcr_short_compensation_enabled (in module nid-
cpower.Session), 110

lcr_short_custom_cable_compensation_enabled
(in module nidcpower.Session), 111

lcr_short_reactance (in module nidcpower.Session),
112

lcr_short_resistance (in module nid-
cpower.Session), 112

lcr_source_aperture_time (in module nid-
cpower.Session), 113

lcr_source_delay_mode (in module nid-
cpower.Session), 114

lcr_stimulus_function (in module nid-
cpower.Session), 114

lcr_voltage_amplitude (in module nid-
cpower.Session), 115

lcr_voltage_range (in module nidcpower.Session),
116

LCRCompensationType (class in nidcpower), 217
LCRDCBiasSource (class in nidcpower), 217
LCRDCBiasTransientResponse (class in nidcpower),

217
LCRImpedanceRangeSource (class in nidcpower), 218
LCRMeasurementTime (class in nidcpower), 218
LCROpenShortLoadCompensationDataSource (class

in nidcpower), 218
LCRReferenceValueType (class in nidcpower), 219
LCRSourceDelayMode (class in nidcpower), 219
LCRStimulusFunction (class in nidcpower), 219
LOAD (nidcpower.LCRCompensationType attribute), 217
LOAD_CONFIGURATION (nid-

cpower.LCRImpedanceRangeSource attribute),
218

LOCAL (nidcpower.Sense attribute), 223
lock() (in module nidcpower.Session), 30
logical_name (in module nidcpower.Session), 117
LONG (nidcpower.ApertureTimeAutoMode attribute), 212
LONG (nidcpower.LCRMeasurementTime attribute), 218
LOW (nidcpower.EventToggleInitialState attribute), 216
LOW (nidcpower.OutputCapacitance attribute), 220
LOW (nidcpower.Polarity attribute), 221

M
MANUAL (nidcpower.LCRSourceDelayMode attribute),

219
MANUAL (nidcpower.PowerAllocationMode attribute), 222
MEASURE (nidcpower.SendSoftwareEdgeTriggerType at-

tribute), 223
measure() (in module nidcpower.Session), 31

244 Index

NI-DCPower Python API Documentation, Release 1.4.8

measure_buffer_size (in module nidcpower.Session),
117

MEASURE_COMPLETE (nidcpower.Event attribute), 216
measure_complete_event_delay (in module nid-

cpower.Session), 118
measure_complete_event_output_behavior (in

module nidcpower.Session), 119
measure_complete_event_output_terminal (in

module nidcpower.Session), 119
measure_complete_event_pulse_polarity (in mod-

ule nidcpower.Session), 120
measure_complete_event_pulse_width (in module

nidcpower.Session), 121
measure_complete_event_toggle_initial_state

(in module nidcpower.Session), 121
measure_multiple() (in module nidcpower.Session),

32
measure_multiple_lcr() (in module nid-

cpower.Session), 32
measure_record_delta_time (in module nid-

cpower.Session), 122
measure_record_length (in module nid-

cpower.Session), 123
measure_record_length_is_finite (in module nid-

cpower.Session), 124
measure_trigger_type (in module nid-

cpower.Session), 124
measure_when (in module nidcpower.Session), 125
MeasurementTypes (class in nidcpower), 220
MeasureWhen (class in nidcpower), 219
MEDIUM (nidcpower.LCRMeasurementTime attribute),

218
MEDIUM_HYSTERESIS (nid-

cpower.AutorangeThresholdMode attribute),
214

merged_channels (in module nidcpower.Session), 126
module

nidcpower, 8

N
NI_STANDARD_0_5M (nidcpower.CableLength attribute),

214
NI_STANDARD_1M (nidcpower.CableLength attribute),

214
NI_STANDARD_2M (nidcpower.CableLength attribute),

214
NI_STANDARD_4M (nidcpower.CableLength attribute),

214
NI_STANDARD_TRIAXIAL_1M (nidcpower.CableLength

attribute), 214
NI_STANDARD_TRIAXIAL_2M (nidcpower.CableLength

attribute), 214
NI_STANDARD_TRIAXIAL_4M (nidcpower.CableLength

attribute), 214

nidcpower
module, 8

NONE (nidcpower.TriggerType attribute), 224
NORMAL (nidcpower.ApertureTimeAutoMode attribute),

212
NORMAL (nidcpower.AutorangeThresholdMode attribute),

213
NORMAL (nidcpower.DCNoiseRejection attribute), 215
NORMAL (nidcpower.LCRDCBiasTransientResponse at-

tribute), 217
NORMAL (nidcpower.TransientResponse attribute), 224

O
OFF (nidcpower.ApertureTimeAutoMode attribute), 212
OFF (nidcpower.AutoZero attribute), 213
OFF (nidcpower.LCRDCBiasSource attribute), 217
ON (nidcpower.AutoZero attribute), 213
ON_DEMAND (nidcpower.MeasureWhen attribute), 219
ON_MEASURE_TRIGGER (nidcpower.MeasureWhen

attribute), 219
ONBOARD_STORAGE (nid-

cpower.LCROpenShortLoadCompensationDataSource
attribute), 218

ONCE (nidcpower.AutoZero attribute), 213
OPEN (nidcpower.LCRCompensationType attribute), 217
OPEN_CUSTOM_CABLE (nid-

cpower.LCRCompensationType attribute),
217

output_capacitance (in module nidcpower.Session),
127

output_connected (in module nidcpower.Session), 127
output_cutoff_current_change_limit_high (in

module nidcpower.Session), 128
output_cutoff_current_change_limit_low (in

module nidcpower.Session), 129
output_cutoff_current_measure_limit_high (in

module nidcpower.Session), 130
output_cutoff_current_measure_limit_low (in

module nidcpower.Session), 131
output_cutoff_current_overrange_enabled (in

module nidcpower.Session), 132
output_cutoff_delay (in module nidcpower.Session),

132
output_cutoff_enabled (in module nid-

cpower.Session), 133
output_cutoff_voltage_change_limit_high (in

module nidcpower.Session), 134
output_cutoff_voltage_change_limit_low (in

module nidcpower.Session), 135
output_cutoff_voltage_measure_limit_high (in

module nidcpower.Session), 135
output_cutoff_voltage_measure_limit_low (in

module nidcpower.Session), 136

Index 245

NI-DCPower Python API Documentation, Release 1.4.8

output_cutoff_voltage_output_limit_high (in
module nidcpower.Session), 137

output_cutoff_voltage_output_limit_low (in
module nidcpower.Session), 138

output_enabled (in module nidcpower.Session), 139
output_function (in module nidcpower.Session), 140
output_resistance (in module nidcpower.Session),

141
OutputCapacitance (class in nidcpower), 220
OutputCutoffReason (class in nidcpower), 220
OutputFunction (class in nidcpower), 221
OutputStates (class in nidcpower), 221
overranging_enabled (in module nidcpower.Session),

141
ovp_enabled (in module nidcpower.Session), 142
ovp_limit (in module nidcpower.Session), 143

P
perform_lcr_load_compensation() (in module nid-

cpower.Session), 34
perform_lcr_open_compensation() (in module nid-

cpower.Session), 35
perform_lcr_open_custom_cable_compensation()

(in module nidcpower.Session), 36
perform_lcr_short_compensation() (in module nid-

cpower.Session), 37
perform_lcr_short_custom_cable_compensation()

(in module nidcpower.Session), 38
Polarity (class in nidcpower), 221
power_allocation_mode (in module nid-

cpower.Session), 143
POWER_LINE_CYCLES (nidcpower.ApertureTimeUnits at-

tribute), 212
power_line_frequency (in module nid-

cpower.Session), 144
power_source (in module nidcpower.Session), 145
power_source_in_use (in module nidcpower.Session),

146
PowerAllocationMode (class in nidcpower), 222
PowerSource (class in nidcpower), 222
PowerSourceInUse (class in nidcpower), 222
PULSE (nidcpower.EventOutputBehavior attribute), 216
PULSE (nidcpower.SendSoftwareEdgeTriggerType at-

tribute), 223
pulse_bias_current_level (in module nid-

cpower.Session), 146
pulse_bias_current_limit (in module nid-

cpower.Session), 147
pulse_bias_current_limit_high (in module nid-

cpower.Session), 148
pulse_bias_current_limit_low (in module nid-

cpower.Session), 149
pulse_bias_delay (in module nidcpower.Session), 150

pulse_bias_voltage_level (in module nid-
cpower.Session), 150

pulse_bias_voltage_limit (in module nid-
cpower.Session), 151

pulse_bias_voltage_limit_high (in module nid-
cpower.Session), 152

pulse_bias_voltage_limit_low (in module nid-
cpower.Session), 153

PULSE_COMPLETE (nidcpower.Event attribute), 216
pulse_complete_event_output_terminal (in mod-

ule nidcpower.Session), 154
pulse_complete_event_pulse_polarity (in module

nidcpower.Session), 154
pulse_complete_event_pulse_width (in module nid-

cpower.Session), 155
PULSE_CURRENT (nidcpower.OutputFunction attribute),

221
pulse_current_level (in module nidcpower.Session),

156
pulse_current_level_range (in module nid-

cpower.Session), 156
pulse_current_limit (in module nidcpower.Session),

157
pulse_current_limit_high (in module nid-

cpower.Session), 158
pulse_current_limit_low (in module nid-

cpower.Session), 159
pulse_current_limit_range (in module nid-

cpower.Session), 159
pulse_off_time (in module nidcpower.Session), 160
pulse_on_time (in module nidcpower.Session), 161
pulse_trigger_type (in module nidcpower.Session),

162
PULSE_VOLTAGE (nidcpower.OutputFunction attribute),

221
pulse_voltage_level (in module nidcpower.Session),

162
pulse_voltage_level_range (in module nid-

cpower.Session), 163
pulse_voltage_limit (in module nidcpower.Session),

164
pulse_voltage_limit_high (in module nid-

cpower.Session), 164
pulse_voltage_limit_low (in module nid-

cpower.Session), 165
pulse_voltage_limit_range (in module nid-

cpower.Session), 166

Q
query_in_compliance() (in module nid-

cpower.Session), 38
query_instrument_status (in module nid-

cpower.Session), 167

246 Index

NI-DCPower Python API Documentation, Release 1.4.8

query_latched_output_cutoff_state() (in module
nidcpower.Session), 39

query_max_current_limit() (in module nid-
cpower.Session), 40

query_max_voltage_level() (in module nid-
cpower.Session), 41

query_min_current_limit() (in module nid-
cpower.Session), 41

query_output_state() (in module nid-
cpower.Session), 42

R
read_current_temperature() (in module nid-

cpower.Session), 43
READY_FOR_PULSE_TRIGGER (nidcpower.Event at-

tribute), 216
ready_for_pulse_trigger_event_output_terminal

(in module nidcpower.Session), 167
ready_for_pulse_trigger_event_pulse_polarity

(in module nidcpower.Session), 168
ready_for_pulse_trigger_event_pulse_width (in

module nidcpower.Session), 169
REGULATE (nidcpower.CurrentLimitBehavior attribute),

215
REMOTE (nidcpower.Sense attribute), 223
requested_power_allocation (in module nid-

cpower.Session), 169
reset() (in module nidcpower.Session), 43
reset_average_before_measurement (in module nid-

cpower.Session), 170
reset_device() (in module nidcpower.Session), 43
reset_with_defaults() (in module nid-

cpower.Session), 44
RpcError, 225

S
samples_to_average (in module nidcpower.Session),

171
SECOND_ORDER (nidcpower.DCNoiseRejection attribute),

215
SECONDS (nidcpower.ApertureTimeUnits attribute), 212
self_cal() (in module nidcpower.Session), 44
self_calibration_persistence (in module nid-

cpower.Session), 172
self_test() (in module nidcpower.Session), 45
SelfCalibrationPersistence (class in nidcpower),

223
SelfTestError, 225
send_software_edge_trigger() (in module nid-

cpower.Session), 45
SendSoftwareEdgeTriggerType (class in nidcpower),

223
Sense (class in nidcpower), 223
sense (in module nidcpower.Session), 173

SEQUENCE (nidcpower.SourceMode attribute), 223
SEQUENCE_ADVANCE (nid-

cpower.SendSoftwareEdgeTriggerType at-
tribute), 223

sequence_advance_trigger_type (in module nid-
cpower.Session), 173

SEQUENCE_ENGINE_DONE (nidcpower.Event attribute),
216

sequence_engine_done_event_output_behavior
(in module nidcpower.Session), 174

sequence_engine_done_event_output_terminal
(in module nidcpower.Session), 175

sequence_engine_done_event_pulse_polarity (in
module nidcpower.Session), 175

sequence_engine_done_event_pulse_width (in
module nidcpower.Session), 176

sequence_engine_done_event_toggle_initial_state
(in module nidcpower.Session), 177

SEQUENCE_ITERATION_COMPLETE (nidcpower.Event at-
tribute), 216

sequence_iteration_complete_event_output_behavior
(in module nidcpower.Session), 178

sequence_iteration_complete_event_output_terminal
(in module nidcpower.Session), 178

sequence_iteration_complete_event_pulse_polarity
(in module nidcpower.Session), 179

sequence_iteration_complete_event_pulse_width
(in module nidcpower.Session), 180

sequence_iteration_complete_event_toggle_initial_state
(in module nidcpower.Session), 180

sequence_loop_count (in module nidcpower.Session),
181

sequence_loop_count_is_finite (in module nid-
cpower.Session), 182

sequence_step_delta_time (in module nid-
cpower.Session), 183

sequence_step_delta_time_enabled (in module nid-
cpower.Session), 183

serial_number (in module nidcpower.Session), 184
Session (class in nidcpower), 8
SessionInitializationBehavior (class in nid-

cpower), 233
set_sequence() (in module nidcpower.Session), 46
SHORT (nidcpower.ApertureTimeAutoMode attribute),

212
SHORT (nidcpower.LCRCompensationType attribute), 217
SHORT (nidcpower.LCRMeasurementTime attribute), 218
SHORT_CUSTOM_CABLE (nid-

cpower.LCRCompensationType attribute),
217

SHUTDOWN (nidcpower.SendSoftwareEdgeTriggerType at-
tribute), 223

shutdown_trigger_type (in module nid-
cpower.Session), 184

Index 247

NI-DCPower Python API Documentation, Release 1.4.8

simulate (in module nidcpower.Session), 185
SINGLE_POINT (nidcpower.SourceMode attribute), 223
SLOW (nidcpower.TransientResponse attribute), 224
SMU_PS (nidcpower.InstrumentMode attribute), 216
SOFTWARE_EDGE (nidcpower.TriggerType attribute), 224
SOURCE (nidcpower.SendSoftwareEdgeTriggerType

attribute), 223
SOURCE_COMPLETE (nidcpower.Event attribute), 216
source_complete_event_output_behavior (in mod-

ule nidcpower.Session), 185
source_complete_event_output_terminal (in mod-

ule nidcpower.Session), 186
source_complete_event_pulse_polarity (in mod-

ule nidcpower.Session), 187
source_complete_event_pulse_width (in module

nidcpower.Session), 188
source_complete_event_toggle_initial_state

(in module nidcpower.Session), 188
source_delay (in module nidcpower.Session), 189
source_mode (in module nidcpower.Session), 190
source_trigger_type (in module nidcpower.Session),

191
SourceMode (class in nidcpower), 223
specific_driver_description (in module nid-

cpower.Session), 192
specific_driver_prefix (in module nid-

cpower.Session), 192
specific_driver_revision (in module nid-

cpower.Session), 192
specific_driver_vendor (in module nid-

cpower.Session), 193
START (nidcpower.SendSoftwareEdgeTriggerType at-

tribute), 223
start_trigger_type (in module nidcpower.Session),

193
supported_instrument_models (in module nid-

cpower.Session), 194
SYMMETRIC (nidcpower.ComplianceLimitSymmetry at-

tribute), 215

T
TOGGLE (nidcpower.EventOutputBehavior attribute), 216
transient_response (in module nidcpower.Session),

194
TransientResponse (class in nidcpower), 224
TriggerType (class in nidcpower), 224
TRIP (nidcpower.CurrentLimitBehavior attribute), 215

U
unlock() (in module nidcpower.Session), 47
UnsupportedConfigurationError, 224
UP (nidcpower.AutorangeBehavior attribute), 213
UP_AND_DOWN (nidcpower.AutorangeBehavior attribute),

213

UP_TO_LIMIT_THEN_DOWN (nid-
cpower.AutorangeBehavior attribute), 213

V
VOLTAGE (nidcpower.LCRDCBiasSource attribute), 217
VOLTAGE (nidcpower.LCRStimulusFunction attribute),

219
VOLTAGE (nidcpower.MeasurementTypes attribute), 220
VOLTAGE (nidcpower.OutputStates attribute), 221
VOLTAGE_CHANGE_HIGH (nid-

cpower.OutputCutoffReason attribute), 220
VOLTAGE_CHANGE_LOW (nidcpower.OutputCutoffReason

attribute), 220
voltage_compensation_frequency (in module nid-

cpower.Session), 195
voltage_gain_bandwidth (in module nid-

cpower.Session), 196
voltage_level (in module nidcpower.Session), 196
voltage_level_autorange (in module nid-

cpower.Session), 197
voltage_level_range (in module nidcpower.Session),

198
voltage_limit (in module nidcpower.Session), 199
voltage_limit_autorange (in module nid-

cpower.Session), 199
voltage_limit_high (in module nidcpower.Session),

200
voltage_limit_low (in module nidcpower.Session),

201
voltage_limit_range (in module nidcpower.Session),

202
VOLTAGE_MEASURE_HIGH (nid-

cpower.OutputCutoffReason attribute), 221
VOLTAGE_MEASURE_LOW (nid-

cpower.OutputCutoffReason attribute), 221
VOLTAGE_OUTPUT_HIGH (nid-

cpower.OutputCutoffReason attribute), 220
VOLTAGE_OUTPUT_LOW (nidcpower.OutputCutoffReason

attribute), 220
voltage_pole_zero_ratio (in module nid-

cpower.Session), 203

W
wait_for_event() (in module nidcpower.Session), 47
WRITE_TO_EEPROM (nid-

cpower.SelfCalibrationPersistence attribute),
223

Z
ZERO_M (nidcpower.CableLength attribute), 214

248 Index

	About
	Support Policy

	Contributing
	Support / Feedback
	Bugs / Feature Requests
	nidcpower module
	Installation
	Usage
	API Reference
	Session
	Methods
	abort
	clear_latched_output_cutoff_state
	close
	commit
	configure_aperture_time
	configure_lcr_compensation
	configure_lcr_custom_cable_compensation
	create_advanced_sequence
	create_advanced_sequence_commit_step
	create_advanced_sequence_step
	delete_advanced_sequence
	disable
	export_attribute_configuration_buffer
	export_attribute_configuration_file
	fetch_multiple
	fetch_multiple_lcr
	get_channel_name
	get_channel_names
	get_ext_cal_last_date_and_time
	get_ext_cal_last_temp
	get_ext_cal_recommended_interval
	get_lcr_compensation_data
	get_lcr_compensation_last_date_and_time
	get_lcr_custom_cable_compensation_data
	get_self_cal_last_date_and_time
	get_self_cal_last_temp
	import_attribute_configuration_buffer
	import_attribute_configuration_file
	initiate
	lock
	measure
	measure_multiple
	measure_multiple_lcr
	perform_lcr_load_compensation
	perform_lcr_open_compensation
	perform_lcr_open_custom_cable_compensation
	perform_lcr_short_compensation
	perform_lcr_short_custom_cable_compensation
	query_in_compliance
	query_latched_output_cutoff_state
	query_max_current_limit
	query_max_voltage_level
	query_min_current_limit
	query_output_state
	read_current_temperature
	reset
	reset_device
	reset_with_defaults
	self_cal
	self_test
	send_software_edge_trigger
	set_sequence
	unlock
	wait_for_event

	Properties
	active_advanced_sequence
	active_advanced_sequence_step
	actual_power_allocation
	aperture_time
	aperture_time_auto_mode
	aperture_time_units
	autorange
	autorange_aperture_time_mode
	autorange_behavior
	autorange_maximum_delay_after_range_change
	autorange_minimum_aperture_time
	autorange_minimum_aperture_time_units
	autorange_minimum_current_range
	autorange_minimum_voltage_range
	autorange_threshold_mode
	auto_zero
	auxiliary_power_source_available
	cable_length
	channel_count
	compliance_limit_symmetry
	conduction_voltage_mode
	conduction_voltage_off_threshold
	conduction_voltage_on_threshold
	current_compensation_frequency
	current_gain_bandwidth
	current_level
	current_level_autorange
	current_level_falling_slew_rate
	current_level_range
	current_level_rising_slew_rate
	current_limit
	current_limit_autorange
	current_limit_behavior
	current_limit_high
	current_limit_low
	current_limit_range
	current_pole_zero_ratio
	dc_noise_rejection
	digital_edge_measure_trigger_input_terminal
	digital_edge_pulse_trigger_input_terminal
	digital_edge_sequence_advance_trigger_input_terminal
	digital_edge_shutdown_trigger_input_terminal
	digital_edge_source_trigger_input_terminal
	digital_edge_start_trigger_input_terminal
	driver_setup
	exported_measure_trigger_output_terminal
	exported_pulse_trigger_output_terminal
	exported_sequence_advance_trigger_output_terminal
	exported_source_trigger_output_terminal
	exported_start_trigger_output_terminal
	fetch_backlog
	instrument_firmware_revision
	instrument_manufacturer
	instrument_mode
	instrument_model
	interlock_input_open
	io_resource_descriptor
	isolation_state
	lcr_actual_load_reactance
	lcr_actual_load_resistance
	lcr_ac_dither_enabled
	lcr_ac_electrical_cable_length_delay
	lcr_automatic_level_control
	lcr_current_amplitude
	lcr_current_range
	lcr_custom_measurement_time
	lcr_dc_bias_automatic_level_control
	lcr_dc_bias_current_level
	lcr_dc_bias_current_range
	lcr_dc_bias_source
	lcr_dc_bias_transient_response
	lcr_dc_bias_voltage_level
	lcr_dc_bias_voltage_range
	lcr_frequency
	lcr_impedance_auto_range
	lcr_impedance_range
	lcr_impedance_range_source
	lcr_load_capacitance
	lcr_load_compensation_enabled
	lcr_load_inductance
	lcr_load_resistance
	lcr_measured_load_reactance
	lcr_measured_load_resistance
	lcr_measurement_time
	lcr_open_compensation_enabled
	lcr_open_conductance
	lcr_open_short_load_compensation_data_source
	lcr_open_susceptance
	lcr_short_compensation_enabled
	lcr_short_custom_cable_compensation_enabled
	lcr_short_reactance
	lcr_short_resistance
	lcr_source_aperture_time
	lcr_source_delay_mode
	lcr_stimulus_function
	lcr_voltage_amplitude
	lcr_voltage_range
	logical_name
	measure_buffer_size
	measure_complete_event_delay
	measure_complete_event_output_behavior
	measure_complete_event_output_terminal
	measure_complete_event_pulse_polarity
	measure_complete_event_pulse_width
	measure_complete_event_toggle_initial_state
	measure_record_delta_time
	measure_record_length
	measure_record_length_is_finite
	measure_trigger_type
	measure_when
	merged_channels
	output_capacitance
	output_connected
	output_cutoff_current_change_limit_high
	output_cutoff_current_change_limit_low
	output_cutoff_current_measure_limit_high
	output_cutoff_current_measure_limit_low
	output_cutoff_current_overrange_enabled
	output_cutoff_delay
	output_cutoff_enabled
	output_cutoff_voltage_change_limit_high
	output_cutoff_voltage_change_limit_low
	output_cutoff_voltage_measure_limit_high
	output_cutoff_voltage_measure_limit_low
	output_cutoff_voltage_output_limit_high
	output_cutoff_voltage_output_limit_low
	output_enabled
	output_function
	output_resistance
	overranging_enabled
	ovp_enabled
	ovp_limit
	power_allocation_mode
	power_line_frequency
	power_source
	power_source_in_use
	pulse_bias_current_level
	pulse_bias_current_limit
	pulse_bias_current_limit_high
	pulse_bias_current_limit_low
	pulse_bias_delay
	pulse_bias_voltage_level
	pulse_bias_voltage_limit
	pulse_bias_voltage_limit_high
	pulse_bias_voltage_limit_low
	pulse_complete_event_output_terminal
	pulse_complete_event_pulse_polarity
	pulse_complete_event_pulse_width
	pulse_current_level
	pulse_current_level_range
	pulse_current_limit
	pulse_current_limit_high
	pulse_current_limit_low
	pulse_current_limit_range
	pulse_off_time
	pulse_on_time
	pulse_trigger_type
	pulse_voltage_level
	pulse_voltage_level_range
	pulse_voltage_limit
	pulse_voltage_limit_high
	pulse_voltage_limit_low
	pulse_voltage_limit_range
	query_instrument_status
	ready_for_pulse_trigger_event_output_terminal
	ready_for_pulse_trigger_event_pulse_polarity
	ready_for_pulse_trigger_event_pulse_width
	requested_power_allocation
	reset_average_before_measurement
	samples_to_average
	self_calibration_persistence
	sense
	sequence_advance_trigger_type
	sequence_engine_done_event_output_behavior
	sequence_engine_done_event_output_terminal
	sequence_engine_done_event_pulse_polarity
	sequence_engine_done_event_pulse_width
	sequence_engine_done_event_toggle_initial_state
	sequence_iteration_complete_event_output_behavior
	sequence_iteration_complete_event_output_terminal
	sequence_iteration_complete_event_pulse_polarity
	sequence_iteration_complete_event_pulse_width
	sequence_iteration_complete_event_toggle_initial_state
	sequence_loop_count
	sequence_loop_count_is_finite
	sequence_step_delta_time
	sequence_step_delta_time_enabled
	serial_number
	shutdown_trigger_type
	simulate
	source_complete_event_output_behavior
	source_complete_event_output_terminal
	source_complete_event_pulse_polarity
	source_complete_event_pulse_width
	source_complete_event_toggle_initial_state
	source_delay
	source_mode
	source_trigger_type
	specific_driver_description
	specific_driver_prefix
	specific_driver_revision
	specific_driver_vendor
	start_trigger_type
	supported_instrument_models
	transient_response
	voltage_compensation_frequency
	voltage_gain_bandwidth
	voltage_level
	voltage_level_autorange
	voltage_level_range
	voltage_limit
	voltage_limit_autorange
	voltage_limit_high
	voltage_limit_low
	voltage_limit_range
	voltage_pole_zero_ratio

	Repeated Capabilities
	channels
	instruments

	Enums
	ApertureTimeAutoMode
	ApertureTimeUnits
	AutoZero
	AutorangeApertureTimeMode
	AutorangeBehavior
	AutorangeThresholdMode
	CableLength
	ComplianceLimitSymmetry
	ConductionVoltageMode
	CurrentLimitBehavior
	DCNoiseRejection
	Event
	EventOutputBehavior
	EventToggleInitialState
	InstrumentMode
	LCRCompensationType
	LCRDCBiasSource
	LCRDCBiasTransientResponse
	LCRImpedanceRangeSource
	LCRMeasurementTime
	LCROpenShortLoadCompensationDataSource
	LCRReferenceValueType
	LCRSourceDelayMode
	LCRStimulusFunction
	MeasureWhen
	MeasurementTypes
	OutputCapacitance
	OutputCutoffReason
	OutputFunction
	OutputStates
	Polarity
	PowerAllocationMode
	PowerSource
	PowerSourceInUse
	SelfCalibrationPersistence
	SendSoftwareEdgeTriggerType
	Sense
	SourceMode
	TransientResponse
	TriggerType

	Exceptions and Warnings
	Error
	DriverError
	UnsupportedConfigurationError
	DriverNotInstalledError
	DriverTooOldError
	DriverTooNewError
	InvalidRepeatedCapabilityError
	SelfTestError
	RpcError
	DriverWarning

	Examples
	nidcpower_advanced_sequence.py
	nidcpower_lcr_source_ac_voltage.py
	nidcpower_measure_record.py
	nidcpower_source_delay_measure.py

	gRPC Support
	SessionInitializationBehavior
	GrpcSessionOptions

	Additional Documentation

	License
	Indices and tables
	Python Module Index
	Index

