

NI-DCPower Python API Documentation

About

The nidcpower module provides a Python API for NI-DCPower. The code is maintained in the Open Source repository for nimi-python [https://github.com/ni/nimi-python].

Support Policy

nidcpower supports all the Operating Systems supported by NI-DCPower.

It follows Python Software Foundation [https://devguide.python.org/#status-of-python-branches] support policy for different versions of CPython.

Contributing

We welcome contributions! You can clone the project repository, build it, and install it by following these instructions [https://github.com/ni/nimi-python/blob/master/CONTRIBUTING.md].

Support / Feedback

For support specific to the Python API, follow the processs in Bugs / Feature Requests.
For support with hardware, the driver runtime or any other questions not specific to the Python API, please visit NI Community Forums [https://forums.ni.com/].

Bugs / Feature Requests

To report a bug or submit a feature request specific to Python API, please use the
GitHub issues page [https://github.com/ni/nimi-python/issues].

Fill in the issue template as completely as possible and we will respond as soon
as we can.

Documentation

	nidcpower module
	Installation

	Usage

	API Reference
	Session

	Methods

	Properties

	Repeated Capabilities

	Enums

	Exceptions and Warnings

	Examples

	gRPC Support

Additional Documentation

Refer to your driver documentation for device-specific information and detailed API documentation.

Refer to the nimi-python Read the Docs project [https://nimi-python.readthedocs.io/en/stable/] for documentation of versions 1.4.4 of the module or earlier.

License

nimi-python is licensed under an MIT-style license (see
LICENSE [https://github.com/ni/nimi-python/blob/master/LICENSE]).
Other incorporated projects may be licensed under different licenses. All
licenses allow for non-commercial and commercial use.

gRPC Features

For driver APIs that support it, passing a GrpcSessionOptions instance as a parameter to Session.__init__() is
subject to the NI General Purpose EULA (see NILICENSE [https://github.com/ni/nimi-python/blob/master/NILICENSE]).

Indices and tables

	Index

	Module Index

	Search Page

nidcpower module

Installation

As a prerequisite to using the nidcpower module, you must install the NI-DCPower runtime on your system. Visit ni.com/downloads [http://www.ni.com/downloads/] to download the driver runtime for your devices.

The nimi-python modules (i.e. for NI-DCPower) can be installed with pip [http://pypi.python.org/pypi/pip]:

$ python -m pip install nidcpower

Usage

The following is a basic example of using the nidcpower module to open a session to a Source Meter Unit and measure voltage and current.

import nidcpower
Configure the session.

with nidcpower.Session(resource_name='PXI1Slot2/0') as session:
 session.measure_record_length = 20
 session.measure_record_length_is_finite = True
 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
 session.voltage_level = 5.0

 session.commit()
 print('Effective measurement rate: {} S/s'.format(session.measure_record_delta_time / 1))

 samples_acquired = 0
 print('Channel Num Voltage Current In Compliance')
 row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
 with session.initiate():
 channel_indices = '0-{}'.format(session.channel_count - 1)
 channels = session.get_channel_names(channel_indices)
 for i, channel_name in enumerate(channels):
 samples_acquired = 0
 while samples_acquired < 20:
 measurements = session.channels[channel_name].fetch_multiple(count=session.fetch_backlog)
 samples_acquired += len(measurements)
 for i in range(len(measurements)):
 print(row_format.format(channel_name, i, measurements[i].voltage, measurements[i].current, measurements[i].in_compliance))

Other usage examples can be found on GitHub. [https://github.com/ni/nimi-python/tree/master/src/nidcpower/examples]

API Reference

	Session
	Session

	Methods
	abort
	abort()

	clear_latched_output_cutoff_state
	clear_latched_output_cutoff_state()

	close
	close()

	commit
	commit()

	configure_aperture_time
	configure_aperture_time()

	configure_lcr_compensation
	configure_lcr_compensation()

	configure_lcr_custom_cable_compensation
	configure_lcr_custom_cable_compensation()

	create_advanced_sequence
	create_advanced_sequence()

	create_advanced_sequence_commit_step
	create_advanced_sequence_commit_step()

	create_advanced_sequence_step
	create_advanced_sequence_step()

	delete_advanced_sequence
	delete_advanced_sequence()

	disable
	disable()

	export_attribute_configuration_buffer
	export_attribute_configuration_buffer()

	export_attribute_configuration_file
	export_attribute_configuration_file()

	fetch_multiple
	fetch_multiple()

	fetch_multiple_lcr
	fetch_multiple_lcr()

	get_channel_name
	get_channel_name()

	get_channel_names
	get_channel_names()

	get_ext_cal_last_date_and_time
	get_ext_cal_last_date_and_time()

	get_ext_cal_last_temp
	get_ext_cal_last_temp()

	get_ext_cal_recommended_interval
	get_ext_cal_recommended_interval()

	get_lcr_compensation_data
	get_lcr_compensation_data()

	get_lcr_compensation_last_date_and_time
	get_lcr_compensation_last_date_and_time()

	get_lcr_custom_cable_compensation_data
	get_lcr_custom_cable_compensation_data()

	get_self_cal_last_date_and_time
	get_self_cal_last_date_and_time()

	get_self_cal_last_temp
	get_self_cal_last_temp()

	import_attribute_configuration_buffer
	import_attribute_configuration_buffer()

	import_attribute_configuration_file
	import_attribute_configuration_file()

	initiate
	initiate()

	lock
	lock()

	measure
	measure()

	measure_multiple
	measure_multiple()

	measure_multiple_lcr
	measure_multiple_lcr()

	perform_lcr_load_compensation
	perform_lcr_load_compensation()

	perform_lcr_open_compensation
	perform_lcr_open_compensation()

	perform_lcr_open_custom_cable_compensation
	perform_lcr_open_custom_cable_compensation()

	perform_lcr_short_compensation
	perform_lcr_short_compensation()

	perform_lcr_short_custom_cable_compensation
	perform_lcr_short_custom_cable_compensation()

	query_in_compliance
	query_in_compliance()

	query_latched_output_cutoff_state
	query_latched_output_cutoff_state()

	query_max_current_limit
	query_max_current_limit()

	query_max_voltage_level
	query_max_voltage_level()

	query_min_current_limit
	query_min_current_limit()

	query_output_state
	query_output_state()

	read_current_temperature
	read_current_temperature()

	reset
	reset()

	reset_device
	reset_device()

	reset_with_defaults
	reset_with_defaults()

	self_cal
	self_cal()

	self_test
	self_test()

	send_software_edge_trigger
	send_software_edge_trigger()

	set_sequence
	set_sequence()

	unlock
	unlock()

	wait_for_event
	wait_for_event()

	Properties
	active_advanced_sequence
	active_advanced_sequence

	active_advanced_sequence_step
	active_advanced_sequence_step

	actual_power_allocation
	actual_power_allocation

	aperture_time
	aperture_time

	aperture_time_auto_mode
	aperture_time_auto_mode

	aperture_time_units
	aperture_time_units

	autorange
	autorange

	autorange_aperture_time_mode
	autorange_aperture_time_mode

	autorange_behavior
	autorange_behavior

	autorange_maximum_delay_after_range_change
	autorange_maximum_delay_after_range_change

	autorange_minimum_aperture_time
	autorange_minimum_aperture_time

	autorange_minimum_aperture_time_units
	autorange_minimum_aperture_time_units

	autorange_minimum_current_range
	autorange_minimum_current_range

	autorange_minimum_voltage_range
	autorange_minimum_voltage_range

	autorange_threshold_mode
	autorange_threshold_mode

	auto_zero
	auto_zero

	auxiliary_power_source_available
	auxiliary_power_source_available

	cable_length
	cable_length

	channel_count
	channel_count

	compliance_limit_symmetry
	compliance_limit_symmetry

	conduction_voltage_mode
	conduction_voltage_mode

	conduction_voltage_off_threshold
	conduction_voltage_off_threshold

	conduction_voltage_on_threshold
	conduction_voltage_on_threshold

	current_compensation_frequency
	current_compensation_frequency

	current_gain_bandwidth
	current_gain_bandwidth

	current_level
	current_level

	current_level_autorange
	current_level_autorange

	current_level_falling_slew_rate
	current_level_falling_slew_rate

	current_level_range
	current_level_range

	current_level_rising_slew_rate
	current_level_rising_slew_rate

	current_limit
	current_limit

	current_limit_autorange
	current_limit_autorange

	current_limit_behavior
	current_limit_behavior

	current_limit_high
	current_limit_high

	current_limit_low
	current_limit_low

	current_limit_range
	current_limit_range

	current_pole_zero_ratio
	current_pole_zero_ratio

	dc_noise_rejection
	dc_noise_rejection

	digital_edge_measure_trigger_input_terminal
	digital_edge_measure_trigger_input_terminal

	digital_edge_pulse_trigger_input_terminal
	digital_edge_pulse_trigger_input_terminal

	digital_edge_sequence_advance_trigger_input_terminal
	digital_edge_sequence_advance_trigger_input_terminal

	digital_edge_shutdown_trigger_input_terminal
	digital_edge_shutdown_trigger_input_terminal

	digital_edge_source_trigger_input_terminal
	digital_edge_source_trigger_input_terminal

	digital_edge_start_trigger_input_terminal
	digital_edge_start_trigger_input_terminal

	driver_setup
	driver_setup

	exported_measure_trigger_output_terminal
	exported_measure_trigger_output_terminal

	exported_pulse_trigger_output_terminal
	exported_pulse_trigger_output_terminal

	exported_sequence_advance_trigger_output_terminal
	exported_sequence_advance_trigger_output_terminal

	exported_source_trigger_output_terminal
	exported_source_trigger_output_terminal

	exported_start_trigger_output_terminal
	exported_start_trigger_output_terminal

	fetch_backlog
	fetch_backlog

	instrument_firmware_revision
	instrument_firmware_revision

	instrument_manufacturer
	instrument_manufacturer

	instrument_mode
	instrument_mode

	instrument_model
	instrument_model

	interlock_input_open
	interlock_input_open

	io_resource_descriptor
	io_resource_descriptor

	isolation_state
	isolation_state

	lcr_actual_load_reactance
	lcr_actual_load_reactance

	lcr_actual_load_resistance
	lcr_actual_load_resistance

	lcr_ac_dither_enabled
	lcr_ac_dither_enabled

	lcr_ac_electrical_cable_length_delay
	lcr_ac_electrical_cable_length_delay

	lcr_automatic_level_control
	lcr_automatic_level_control

	lcr_current_amplitude
	lcr_current_amplitude

	lcr_current_range
	lcr_current_range

	lcr_custom_measurement_time
	lcr_custom_measurement_time

	lcr_dc_bias_automatic_level_control
	lcr_dc_bias_automatic_level_control

	lcr_dc_bias_current_level
	lcr_dc_bias_current_level

	lcr_dc_bias_current_range
	lcr_dc_bias_current_range

	lcr_dc_bias_source
	lcr_dc_bias_source

	lcr_dc_bias_transient_response
	lcr_dc_bias_transient_response

	lcr_dc_bias_voltage_level
	lcr_dc_bias_voltage_level

	lcr_dc_bias_voltage_range
	lcr_dc_bias_voltage_range

	lcr_frequency
	lcr_frequency

	lcr_impedance_auto_range
	lcr_impedance_auto_range

	lcr_impedance_range
	lcr_impedance_range

	lcr_impedance_range_source
	lcr_impedance_range_source

	lcr_load_capacitance
	lcr_load_capacitance

	lcr_load_compensation_enabled
	lcr_load_compensation_enabled

	lcr_load_inductance
	lcr_load_inductance

	lcr_load_resistance
	lcr_load_resistance

	lcr_measured_load_reactance
	lcr_measured_load_reactance

	lcr_measured_load_resistance
	lcr_measured_load_resistance

	lcr_measurement_time
	lcr_measurement_time

	lcr_open_compensation_enabled
	lcr_open_compensation_enabled

	lcr_open_conductance
	lcr_open_conductance

	lcr_open_short_load_compensation_data_source
	lcr_open_short_load_compensation_data_source

	lcr_open_susceptance
	lcr_open_susceptance

	lcr_short_compensation_enabled
	lcr_short_compensation_enabled

	lcr_short_custom_cable_compensation_enabled
	lcr_short_custom_cable_compensation_enabled

	lcr_short_reactance
	lcr_short_reactance

	lcr_short_resistance
	lcr_short_resistance

	lcr_source_aperture_time
	lcr_source_aperture_time

	lcr_source_delay_mode
	lcr_source_delay_mode

	lcr_stimulus_function
	lcr_stimulus_function

	lcr_voltage_amplitude
	lcr_voltage_amplitude

	lcr_voltage_range
	lcr_voltage_range

	logical_name
	logical_name

	measure_buffer_size
	measure_buffer_size

	measure_complete_event_delay
	measure_complete_event_delay

	measure_complete_event_output_behavior
	measure_complete_event_output_behavior

	measure_complete_event_output_terminal
	measure_complete_event_output_terminal

	measure_complete_event_pulse_polarity
	measure_complete_event_pulse_polarity

	measure_complete_event_pulse_width
	measure_complete_event_pulse_width

	measure_complete_event_toggle_initial_state
	measure_complete_event_toggle_initial_state

	measure_record_delta_time
	measure_record_delta_time

	measure_record_length
	measure_record_length

	measure_record_length_is_finite
	measure_record_length_is_finite

	measure_trigger_type
	measure_trigger_type

	measure_when
	measure_when

	merged_channels
	merged_channels

	output_capacitance
	output_capacitance

	output_connected
	output_connected

	output_cutoff_current_change_limit_high
	output_cutoff_current_change_limit_high

	output_cutoff_current_change_limit_low
	output_cutoff_current_change_limit_low

	output_cutoff_current_measure_limit_high
	output_cutoff_current_measure_limit_high

	output_cutoff_current_measure_limit_low
	output_cutoff_current_measure_limit_low

	output_cutoff_current_overrange_enabled
	output_cutoff_current_overrange_enabled

	output_cutoff_delay
	output_cutoff_delay

	output_cutoff_enabled
	output_cutoff_enabled

	output_cutoff_voltage_change_limit_high
	output_cutoff_voltage_change_limit_high

	output_cutoff_voltage_change_limit_low
	output_cutoff_voltage_change_limit_low

	output_cutoff_voltage_measure_limit_high
	output_cutoff_voltage_measure_limit_high

	output_cutoff_voltage_measure_limit_low
	output_cutoff_voltage_measure_limit_low

	output_cutoff_voltage_output_limit_high
	output_cutoff_voltage_output_limit_high

	output_cutoff_voltage_output_limit_low
	output_cutoff_voltage_output_limit_low

	output_enabled
	output_enabled

	output_function
	output_function

	output_resistance
	output_resistance

	overranging_enabled
	overranging_enabled

	ovp_enabled
	ovp_enabled

	ovp_limit
	ovp_limit

	power_allocation_mode
	power_allocation_mode

	power_line_frequency
	power_line_frequency

	power_source
	power_source

	power_source_in_use
	power_source_in_use

	pulse_bias_current_level
	pulse_bias_current_level

	pulse_bias_current_limit
	pulse_bias_current_limit

	pulse_bias_current_limit_high
	pulse_bias_current_limit_high

	pulse_bias_current_limit_low
	pulse_bias_current_limit_low

	pulse_bias_delay
	pulse_bias_delay

	pulse_bias_voltage_level
	pulse_bias_voltage_level

	pulse_bias_voltage_limit
	pulse_bias_voltage_limit

	pulse_bias_voltage_limit_high
	pulse_bias_voltage_limit_high

	pulse_bias_voltage_limit_low
	pulse_bias_voltage_limit_low

	pulse_complete_event_output_terminal
	pulse_complete_event_output_terminal

	pulse_complete_event_pulse_polarity
	pulse_complete_event_pulse_polarity

	pulse_complete_event_pulse_width
	pulse_complete_event_pulse_width

	pulse_current_level
	pulse_current_level

	pulse_current_level_range
	pulse_current_level_range

	pulse_current_limit
	pulse_current_limit

	pulse_current_limit_high
	pulse_current_limit_high

	pulse_current_limit_low
	pulse_current_limit_low

	pulse_current_limit_range
	pulse_current_limit_range

	pulse_off_time
	pulse_off_time

	pulse_on_time
	pulse_on_time

	pulse_trigger_type
	pulse_trigger_type

	pulse_voltage_level
	pulse_voltage_level

	pulse_voltage_level_range
	pulse_voltage_level_range

	pulse_voltage_limit
	pulse_voltage_limit

	pulse_voltage_limit_high
	pulse_voltage_limit_high

	pulse_voltage_limit_low
	pulse_voltage_limit_low

	pulse_voltage_limit_range
	pulse_voltage_limit_range

	query_instrument_status
	query_instrument_status

	ready_for_pulse_trigger_event_output_terminal
	ready_for_pulse_trigger_event_output_terminal

	ready_for_pulse_trigger_event_pulse_polarity
	ready_for_pulse_trigger_event_pulse_polarity

	ready_for_pulse_trigger_event_pulse_width
	ready_for_pulse_trigger_event_pulse_width

	requested_power_allocation
	requested_power_allocation

	reset_average_before_measurement
	reset_average_before_measurement

	samples_to_average
	samples_to_average

	self_calibration_persistence
	self_calibration_persistence

	sense
	sense

	sequence_advance_trigger_type
	sequence_advance_trigger_type

	sequence_engine_done_event_output_behavior
	sequence_engine_done_event_output_behavior

	sequence_engine_done_event_output_terminal
	sequence_engine_done_event_output_terminal

	sequence_engine_done_event_pulse_polarity
	sequence_engine_done_event_pulse_polarity

	sequence_engine_done_event_pulse_width
	sequence_engine_done_event_pulse_width

	sequence_engine_done_event_toggle_initial_state
	sequence_engine_done_event_toggle_initial_state

	sequence_iteration_complete_event_output_behavior
	sequence_iteration_complete_event_output_behavior

	sequence_iteration_complete_event_output_terminal
	sequence_iteration_complete_event_output_terminal

	sequence_iteration_complete_event_pulse_polarity
	sequence_iteration_complete_event_pulse_polarity

	sequence_iteration_complete_event_pulse_width
	sequence_iteration_complete_event_pulse_width

	sequence_iteration_complete_event_toggle_initial_state
	sequence_iteration_complete_event_toggle_initial_state

	sequence_loop_count
	sequence_loop_count

	sequence_loop_count_is_finite
	sequence_loop_count_is_finite

	sequence_step_delta_time
	sequence_step_delta_time

	sequence_step_delta_time_enabled
	sequence_step_delta_time_enabled

	serial_number
	serial_number

	shutdown_trigger_type
	shutdown_trigger_type

	simulate
	simulate

	source_complete_event_output_behavior
	source_complete_event_output_behavior

	source_complete_event_output_terminal
	source_complete_event_output_terminal

	source_complete_event_pulse_polarity
	source_complete_event_pulse_polarity

	source_complete_event_pulse_width
	source_complete_event_pulse_width

	source_complete_event_toggle_initial_state
	source_complete_event_toggle_initial_state

	source_delay
	source_delay

	source_mode
	source_mode

	source_trigger_type
	source_trigger_type

	specific_driver_description
	specific_driver_description

	specific_driver_prefix
	specific_driver_prefix

	specific_driver_revision
	specific_driver_revision

	specific_driver_vendor
	specific_driver_vendor

	start_trigger_type
	start_trigger_type

	supported_instrument_models
	supported_instrument_models

	transient_response
	transient_response

	voltage_compensation_frequency
	voltage_compensation_frequency

	voltage_gain_bandwidth
	voltage_gain_bandwidth

	voltage_level
	voltage_level

	voltage_level_autorange
	voltage_level_autorange

	voltage_level_range
	voltage_level_range

	voltage_limit
	voltage_limit

	voltage_limit_autorange
	voltage_limit_autorange

	voltage_limit_high
	voltage_limit_high

	voltage_limit_low
	voltage_limit_low

	voltage_limit_range
	voltage_limit_range

	voltage_pole_zero_ratio
	voltage_pole_zero_ratio

	Repeated Capabilities
	channels
	nidcpower.Session.channels

	instruments
	nidcpower.Session.instruments

	Enums
	ApertureTimeAutoMode
	ApertureTimeAutoMode
	ApertureTimeAutoMode.OFF

	ApertureTimeAutoMode.SHORT

	ApertureTimeAutoMode.NORMAL

	ApertureTimeAutoMode.LONG

	ApertureTimeUnits
	ApertureTimeUnits
	ApertureTimeUnits.SECONDS

	ApertureTimeUnits.POWER_LINE_CYCLES

	AutoZero
	AutoZero
	AutoZero.OFF

	AutoZero.ONCE

	AutoZero.ON

	AutorangeApertureTimeMode
	AutorangeApertureTimeMode
	AutorangeApertureTimeMode.AUTO

	AutorangeApertureTimeMode.CUSTOM

	AutorangeBehavior
	AutorangeBehavior
	AutorangeBehavior.UP_TO_LIMIT_THEN_DOWN

	AutorangeBehavior.UP

	AutorangeBehavior.UP_AND_DOWN

	AutorangeThresholdMode
	AutorangeThresholdMode
	AutorangeThresholdMode.NORMAL

	AutorangeThresholdMode.FAST_STEP

	AutorangeThresholdMode.HIGH_HYSTERESIS

	AutorangeThresholdMode.MEDIUM_HYSTERESIS

	AutorangeThresholdMode.HOLD

	CableLength
	CableLength
	CableLength.ZERO_M

	CableLength.NI_STANDARD_0_5M

	CableLength.NI_STANDARD_1M

	CableLength.NI_STANDARD_2M

	CableLength.NI_STANDARD_4M

	CableLength.NI_STANDARD_TRIAXIAL_1M

	CableLength.NI_STANDARD_TRIAXIAL_2M

	CableLength.NI_STANDARD_TRIAXIAL_4M

	CableLength.CUSTOM_ONBOARD_STORAGE

	CableLength.CUSTOM_AS_CONFIGURED

	ComplianceLimitSymmetry
	ComplianceLimitSymmetry
	ComplianceLimitSymmetry.SYMMETRIC

	ComplianceLimitSymmetry.ASYMMETRIC

	ConductionVoltageMode
	ConductionVoltageMode
	ConductionVoltageMode.AUTOMATIC

	ConductionVoltageMode.ENABLED

	ConductionVoltageMode.DISABLED

	CurrentLimitBehavior
	CurrentLimitBehavior
	CurrentLimitBehavior.REGULATE

	CurrentLimitBehavior.TRIP

	DCNoiseRejection
	DCNoiseRejection
	DCNoiseRejection.SECOND_ORDER

	DCNoiseRejection.NORMAL

	Event
	Event
	Event.SOURCE_COMPLETE

	Event.MEASURE_COMPLETE

	Event.SEQUENCE_ITERATION_COMPLETE

	Event.SEQUENCE_ENGINE_DONE

	Event.PULSE_COMPLETE

	Event.READY_FOR_PULSE_TRIGGER

	EventOutputBehavior
	EventOutputBehavior
	EventOutputBehavior.PULSE

	EventOutputBehavior.TOGGLE

	EventToggleInitialState
	EventToggleInitialState
	EventToggleInitialState.LOW

	EventToggleInitialState.HIGH

	InstrumentMode
	InstrumentMode
	InstrumentMode.SMU_PS

	InstrumentMode.LCR

	InstrumentMode.E_LOAD

	LCRCompensationType
	LCRCompensationType
	LCRCompensationType.OPEN

	LCRCompensationType.SHORT

	LCRCompensationType.LOAD

	LCRCompensationType.OPEN_CUSTOM_CABLE

	LCRCompensationType.SHORT_CUSTOM_CABLE

	LCRDCBiasSource
	LCRDCBiasSource
	LCRDCBiasSource.OFF

	LCRDCBiasSource.VOLTAGE

	LCRDCBiasSource.CURRENT

	LCRDCBiasTransientResponse
	LCRDCBiasTransientResponse
	LCRDCBiasTransientResponse.NORMAL

	LCRDCBiasTransientResponse.CUSTOM

	LCRImpedanceRangeSource
	LCRImpedanceRangeSource
	LCRImpedanceRangeSource.IMPEDANCE_RANGE

	LCRImpedanceRangeSource.LOAD_CONFIGURATION

	LCRMeasurementTime
	LCRMeasurementTime
	LCRMeasurementTime.SHORT

	LCRMeasurementTime.MEDIUM

	LCRMeasurementTime.LONG

	LCRMeasurementTime.CUSTOM

	LCROpenShortLoadCompensationDataSource
	LCROpenShortLoadCompensationDataSource
	LCROpenShortLoadCompensationDataSource.ONBOARD_STORAGE

	LCROpenShortLoadCompensationDataSource.AS_DEFINED

	LCROpenShortLoadCompensationDataSource.AS_CONFIGURED

	LCRReferenceValueType
	LCRReferenceValueType
	LCRReferenceValueType.IMPEDANCE

	LCRReferenceValueType.IDEAL_CAPACITANCE

	LCRReferenceValueType.IDEAL_INDUCTANCE

	LCRReferenceValueType.IDEAL_RESISTANCE

	LCRSourceDelayMode
	LCRSourceDelayMode
	LCRSourceDelayMode.AUTOMATIC

	LCRSourceDelayMode.MANUAL

	LCRStimulusFunction
	LCRStimulusFunction
	LCRStimulusFunction.VOLTAGE

	LCRStimulusFunction.CURRENT

	MeasureWhen
	MeasureWhen
	MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE

	MeasureWhen.ON_DEMAND

	MeasureWhen.ON_MEASURE_TRIGGER

	MeasurementTypes
	MeasurementTypes
	MeasurementTypes.CURRENT

	MeasurementTypes.VOLTAGE

	OutputCapacitance
	OutputCapacitance
	OutputCapacitance.LOW

	OutputCapacitance.HIGH

	OutputCutoffReason
	OutputCutoffReason
	OutputCutoffReason.ALL

	OutputCutoffReason.VOLTAGE_OUTPUT_HIGH

	OutputCutoffReason.VOLTAGE_OUTPUT_LOW

	OutputCutoffReason.CURRENT_MEASURE_HIGH

	OutputCutoffReason.CURRENT_MEASURE_LOW

	OutputCutoffReason.VOLTAGE_CHANGE_HIGH

	OutputCutoffReason.VOLTAGE_CHANGE_LOW

	OutputCutoffReason.CURRENT_CHANGE_HIGH

	OutputCutoffReason.CURRENT_CHANGE_LOW

	OutputCutoffReason.CURRENT_SATURATED

	OutputCutoffReason.VOLTAGE_MEASURE_HIGH

	OutputCutoffReason.VOLTAGE_MEASURE_LOW

	OutputFunction
	OutputFunction
	OutputFunction.DC_VOLTAGE

	OutputFunction.DC_CURRENT

	OutputFunction.PULSE_VOLTAGE

	OutputFunction.PULSE_CURRENT

	OutputStates
	OutputStates
	OutputStates.VOLTAGE

	OutputStates.CURRENT

	Polarity
	Polarity
	Polarity.HIGH

	Polarity.LOW

	PowerAllocationMode
	PowerAllocationMode
	PowerAllocationMode.DISABLED

	PowerAllocationMode.AUTOMATIC

	PowerAllocationMode.MANUAL

	PowerSource
	PowerSource
	PowerSource.INTERNAL

	PowerSource.AUXILIARY

	PowerSource.AUTOMATIC

	PowerSourceInUse
	PowerSourceInUse
	PowerSourceInUse.INTERNAL

	PowerSourceInUse.AUXILIARY

	SelfCalibrationPersistence
	SelfCalibrationPersistence
	SelfCalibrationPersistence.KEEP_IN_MEMORY

	SelfCalibrationPersistence.WRITE_TO_EEPROM

	SendSoftwareEdgeTriggerType
	SendSoftwareEdgeTriggerType
	SendSoftwareEdgeTriggerType.START

	SendSoftwareEdgeTriggerType.SOURCE

	SendSoftwareEdgeTriggerType.MEASURE

	SendSoftwareEdgeTriggerType.SEQUENCE_ADVANCE

	SendSoftwareEdgeTriggerType.PULSE

	SendSoftwareEdgeTriggerType.SHUTDOWN

	Sense
	Sense
	Sense.LOCAL

	Sense.REMOTE

	SourceMode
	SourceMode
	SourceMode.SINGLE_POINT

	SourceMode.SEQUENCE

	TransientResponse
	TransientResponse
	TransientResponse.NORMAL

	TransientResponse.FAST

	TransientResponse.SLOW

	TransientResponse.CUSTOM

	TriggerType
	TriggerType
	TriggerType.NONE

	TriggerType.DIGITAL_EDGE

	TriggerType.SOFTWARE_EDGE

	Exceptions and Warnings
	Error
	Error

	DriverError
	DriverError

	UnsupportedConfigurationError
	UnsupportedConfigurationError

	DriverNotInstalledError
	DriverNotInstalledError

	DriverTooOldError
	DriverTooOldError

	DriverTooNewError
	DriverTooNewError

	InvalidRepeatedCapabilityError
	InvalidRepeatedCapabilityError

	SelfTestError
	SelfTestError

	RpcError
	RpcError

	DriverWarning
	DriverWarning

	Examples
	nidcpower_advanced_sequence.py

	nidcpower_lcr_source_ac_voltage.py

	nidcpower_measure_record.py

	nidcpower_source_delay_measure.py

	gRPC Support
	SessionInitializationBehavior
	SessionInitializationBehavior
	SessionInitializationBehavior.AUTO

	SessionInitializationBehavior.INITIALIZE_SERVER_SESSION

	SessionInitializationBehavior.ATTACH_TO_SERVER_SESSION

	GrpcSessionOptions
	GrpcSessionOptions

Session

	
class nidcpower.Session(self, resource_name, channels=None, reset=False, options={}, independent_channels=True, *, grpc_options=None)

	Creates and returns a new NI-DCPower session to the instrument(s) and channel(s) specified
in resource name to be used in all subsequent NI-DCPower method calls. With this method,
you can optionally set the initial state of the following session properties:

	nidcpower.Session.simulate

	nidcpower.Session.driver_setup

After calling this method, the specified channel or channels will be in the Uncommitted
state.

To place channel(s) in a known start-up state when creating a new session, set reset to
True. This action is equivalent to using the nidcpower.Session.reset() method immediately after initializing the
session.

To open a session and leave the channel(s) in an existing configuration without passing
through a transitional output state, set reset to False. Next, configure the channel(s)
as in the previous session, change the desired settings, and then call the nidcpower.Session.initiate() method
to write both settings.

Details of Independent Channel Operation

With this method and channel-based NI-DCPower methods and properties, you can use any
channels in the session independently. For example, you can initiate a subset of channels in
the session with nidcpower.Session.initiate(), and the other channels in the session remain in the Uncommitted
state.

When you initialize with independent channels, each channel steps through the NI-DCPower
programming state model independently of all other channels, and you can specify a subset of
channels for most operations.

Note You can make concurrent calls to a session from multiple threads, but the session
executes the calls one at a time. If you specify multiple channels for a method or property,
the session may perform the operation on multiple channels in parallel, though this is not
guaranteed, and some operations may execute sequentially.

	Parameters:

	
	resource_name (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Specifies the resource name as seen in Measurement
& Automation Explorer (MAX) or lsni, for example “PXI1Slot3” where “PXI1Slot3” is an
instrument’s resource name. If independent_channels is False, resource name
can also be a logical IVI name.

If independent_channels is True, resource name can be names of the instrument(s)
and the channel(s) to initialize. Specify the instrument(s) and channel(s) using the
form “PXI1Slot3/0,PXI1Slot3/2-3,PXI1Slot4/2-3 or
PXI1Slot3/0,PXI1Slot3/2:3,PXI1Slot4/2:3”, where “PXI1Slot3” and “PXI1Slot4” are
instrument resource names followed by channels. If you exclude a channels string
after an instrument resource name, all channels of the instrument(s) are included in
the session.

	channels (str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list], range [https://docs.python.org/3/library/stdtypes.html#range], tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – For new applications, use the default value of None
and specify the channels in resource name.

Specifies which channel(s) to include in a new session. Specify multiple
channels by using a channel list or a channel range. A channel list is a comma (,)
separated sequence of channel names (for example, 0,2 specifies channels 0 and 2).
A channel range is a lower bound channel followed by a hyphen (-) or colon (:)
followed by an upper bound channel (for example, 0-2 specifies channels 0, 1,
and 2).

If independent_channels is False, this argument specifies which channels to include
in a legacy synchronized channels session. If you do not specify any channels, by
default all channels on the device are included in the session.

If independent_channels is True, this argument combines with resource name to
specify which channels to include in an independent channels session. Initializing
an independent channels session with a channels argument is deprecated.

	reset (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether to reset channel(s) during the initialization procedure.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Specifies the initial value of certain properties for the session. The
syntax for options is a dictionary of properties with an assigned
value. For example:

{ ‘simulate’: False }

You do not have to specify a value for all the properties. If you do not
specify a value for a property, the default value is used.

Advanced Example:
{ ‘simulate’: True, ‘driver_setup’: { ‘Model’: ‘<model number>’, ‘BoardType’: ‘<type>’ } }

	Property

	Default

	range_check

	True

	query_instrument_status

	False

	cache

	True

	simulate

	False

	record_value_coersions

	False

	driver_setup

	{}

	independent_channels (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether to initialize the session with
independent channels. Set this argument to False on legacy applications or if you
are unable to upgrade your NI-DCPower driver runtime to 20.6 or higher.

	grpc_options (nidcpower.GrpcSessionOptions) – MeasurementLink gRPC session options

Methods

abort

	
nidcpower.Session.abort()

	Transitions the specified channel(s) from the Running state to the
Uncommitted state. If a sequence is running, it is stopped. Any
configuration methods called after this method are not applied until
the nidcpower.Session.initiate() method is called. If power output is enabled
when you call the nidcpower.Session.abort() method, the channels remain
in their current state and continue providing power.

Use the nidcpower.Session.ConfigureOutputEnabled() method to disable power
output on a per channel basis. Use the nidcpower.Session.reset() method to
disable output on all channels.

Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for information about the
specific NI-DCPower software states.

Related Topics:

Programming
States

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].abort()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.abort()

clear_latched_output_cutoff_state

	
nidcpower.Session.clear_latched_output_cutoff_state(output_cutoff_reason)

	Clears the state of an output cutoff that was engaged.
To clear the state for all output cutoff reasons, use ALL.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].clear_latched_output_cutoff_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.clear_latched_output_cutoff_state()

	Parameters:

	output_cutoff_reason (nidcpower.OutputCutoffReason) – Specifies the reasons for which to clear the output cutoff state.

	ALL

	Clears all output cutoff conditions

	VOLTAGE_OUTPUT_HIGH

	Clears cutoffs caused when the output exceeded the high cutoff limit for voltage output

	VOLTAGE_OUTPUT_LOW

	Clears cutoffs caused when the output fell below the low cutoff limit for voltage output

	VOLTAGE_MEASURE_HIGH

	Clears cutoffs caused when the measured voltage exceeded the high cutoff limit for voltage output

	VOLTAGE_MEASURE_LOW

	Clears cutoffs caused when the measured voltage fell below the low cutoff limit for voltage output

	CURRENT_MEASURE_HIGH

	Clears cutoffs caused when the measured current exceeded the high cutoff limit for current output

	CURRENT_MEASURE_LOW

	Clears cutoffs caused when the measured current fell below the low cutoff limit for current output

	VOLTAGE_CHANGE_HIGH

	Clears cutoffs caused when the voltage slew rate increased beyond the positive change cutoff for voltage output

	VOLTAGE_CHANGE_LOW

	Clears cutoffs caused when the voltage slew rate decreased beyond the negative change cutoff for voltage output

	CURRENT_CHANGE_HIGH

	Clears cutoffs caused when the current slew rate increased beyond the positive change cutoff for current output

	CURRENT_CHANGE_LOW

	Clears cutoffs caused when the voltage slew rate decreased beyond the negative change cutoff for current output

	CURRENT_SATURATED

	Clears cutoffs caused when the measured current saturates the current range

close

	
nidcpower.Session.close()

	Closes the session specified in vi and deallocates the resources
that NI-DCPower reserves. If power output is enabled when you call this
method, the channels remain in their existing state and
continue providing power. Use the nidcpower.Session.ConfigureOutputEnabled()
method to disable power output on a per channel basis. Use the
nidcpower.Session.reset() method to disable power output on all channel(s).

Related Topics:

Programming
States

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Note

One or more of the referenced methods are not in the Python API for this driver.

Note

This method is not needed when using the session context manager

commit

	
nidcpower.Session.commit()

	Applies previously configured settings to the specified channel(s). Calling this
method moves the NI-DCPower session from the Uncommitted state into
the Committed state. After calling this method, modifying any
property reverts the NI-DCPower session to the Uncommitted state. Use
the nidcpower.Session.initiate() method to transition to the Running state.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for details about the specific
NI-DCPower software states.

Related Topics:

Programming
States

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].commit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.commit()

configure_aperture_time

	
nidcpower.Session.configure_aperture_time(aperture_time, units=nidcpower.ApertureTimeUnits.SECONDS)

	Configures the aperture time on the specified channel(s).

The supported values depend on the units. Refer to the Aperture
Time topic for your device in the NI DC Power Supplies and SMUs Help
for more information. In general, devices support discrete
apertureTime values, and if you configure apertureTime to some
unsupported value, NI-DCPower coerces it up to the next supported value.

Refer to the Measurement Configuration and Timing or DC Noise
Rejection topic for your device in the NI DC Power Supplies and SMUs
Help for more information about how to configure your measurements.

Related Topics:

Aperture Time

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_aperture_time()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_aperture_time()

	Parameters:

	
	aperture_time (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the aperture time. Refer to the Aperture Time topic for your
device in the NI DC Power Supplies and SMUs Help for more information.

	units (nidcpower.ApertureTimeUnits) – Specifies the units for apertureTime.
Defined Values:

	SECONDS

	Specifies seconds.

	POWER_LINE_CYCLES

	Specifies Power Line Cycles.

configure_lcr_compensation

	
nidcpower.Session.configure_lcr_compensation(compensation_data)

	Applies previously generated open, short, load, as well as open and short custom cable compensation data to LCR measurements.

This method applies open, short and load compensation data when you have set the nidcpower.Session.lcr_open_short_load_compensation_data_source property to AS_CONFIGURED, and it also applies custom cable compensation data when you have set the nidcpower.Session.cable_length property to CUSTOM_AS_CONFIGURED.

Call this method after you have obtained LCR compensation data.

If the nidcpower.Session.lcr_short_custom_cable_compensation_enabled property is set to True, you must generate data with both nidcpower.Session.perform_lcr_open_custom_cable_compensation() and nidcpower.Session.perform_lcr_short_custom_cable_compensation(); if False, you must only use nidcpower.Session.perform_lcr_open_custom_cable_compensation(), and NI-DCPower uses default short data.

Call nidcpower.Session.get_lcr_compensation_data() and pass the compensation data to this method.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_lcr_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_lcr_compensation()

	Parameters:

	compensation_data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The open, short and load compensation data to apply.

configure_lcr_custom_cable_compensation

	
nidcpower.Session.configure_lcr_custom_cable_compensation(custom_cable_compensation_data)

	This method is deprecated. Use nidcpower.Session.configure_lcr_compensation()
instead.

Applies previously generated open and short custom cable compensation data to LCR measurements.

This method applies custom cable compensation data when you have set nidcpower.Session.cable_length property to CUSTOM_AS_CONFIGURED.

Call this method after you have obtained custom cable compensation data.

If nidcpower.Session.lcr_short_custom_cable_compensation_enabled property is set to True, you must generate data with both nidcpower.Session.perform_lcr_open_custom_cable_compensation() and nidcpower.Session.perform_lcr_short_custom_cable_compensation();
if False, you must only use nidcpower.Session.perform_lcr_open_custom_cable_compensation(), and NI-DCPower uses default short data.

Call nidcpower.Session.get_lcr_custom_cable_compensation_data() and pass the custom cable compensation data to this method.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].configure_lcr_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.configure_lcr_custom_cable_compensation()

	Parameters:

	custom_cable_compensation_data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The open and short custom cable compensation data to apply.

create_advanced_sequence

	
nidcpower.Session.create_advanced_sequence(sequence_name, property_names, set_as_active_sequence=True)

	Creates an empty advanced sequence. Call the
nidcpower.Session.create_advanced_sequence_step() method to add steps to the
active advanced sequence.

You can create multiple advanced sequences in a session.

Support for this method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Use this method in the Uncommitted or Committed programming states.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for more information about
NI-DCPower programming states.

Related Topics:

Advanced Sequence
Mode

Programming
States

nidcpower.Session.create_advanced_sequence_step()

Note

This method is not supported on all devices. Refer to Supported
Methods by
Device
for more information about supported devices.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence()

	Parameters:

	
	sequence_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the name of the sequence to create.

	property_names (list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the names of the properties you reconfigure per step in the advanced sequence. The following table lists which properties can be configured in an advanced sequence for each NI-DCPower device that supports advanced sequencing. A Yes indicates that the property can be configured in advanced sequencing. An No indicates that the property cannot be configured in advanced sequencing.

	Property

	PXIe-4135

	PXIe-4136

	PXIe-4137

	PXIe-4138

	PXIe-4139

	PXIe-4140/4142/4144

	PXIe-4141/4143/4145

	PXIe-4147

	PXIe-4162/4163

	PXIe-4190

	nidcpower.Session.aperture_time

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.dc_noise_rejection

	Yes

	No

	Yes

	No

	Yes

	No

	No

	Yes

	Yes

	Yes

	nidcpower.Session.instrument_mode

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_actual_load_reactance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_actual_load_resistance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_current_amplitude

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_current_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_custom_measurement_time

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_dc_bias_current_level

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_dc_bias_current_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_dc_bias_source

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_dc_bias_voltage_level

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_dc_bias_voltage_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_frequency

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_impedance_auto_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_impedance_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_load_compensation_enabled

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_measured_load_reactance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_measured_load_resistance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_measurement_time

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_open_compensation_enabled

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_open_conductance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_open_susceptance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_short_compensation_enabled

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_short_reactance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_short_resistance

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_source_delay_mode

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_stimulus_function

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_voltage_amplitude

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.lcr_voltage_range

	No

	No

	No

	No

	No

	No

	No

	No

	No

	Yes

	nidcpower.Session.measure_record_length

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.sense

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.ovp_enabled

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	No

	No

	nidcpower.Session.ovp_limit

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_delay

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_off_time

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_on_time

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.source_delay

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_compensation_frequency

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_gain_bandwidth

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_pole_zero_ratio

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_compensation_frequency

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_gain_bandwidth

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_pole_zero_ratio

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	nidcpower.Session.voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	nidcpower.Session.voltage_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	nidcpower.Session.current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	Yes

	nidcpower.Session.current_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.voltage_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_enabled

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_function

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	nidcpower.Session.output_resistance

	Yes

	No

	Yes

	No

	Yes

	No

	Yes

	Yes

	No

	No

	nidcpower.Session.pulse_bias_current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_bias_voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_limit

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_limit_high

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_limit_low

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_current_limit_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_level

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.pulse_voltage_level_range

	Yes

	Yes

	Yes

	Yes

	Yes

	No

	No

	No

	No

	No

	nidcpower.Session.transient_response

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	set_as_active_sequence (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies that this current sequence is active.

create_advanced_sequence_commit_step

	
nidcpower.Session.create_advanced_sequence_commit_step(set_as_active_step=True)

	Creates a Commit step in the Active advanced sequence. A Commit step
configures channels to a user-defined known state before starting the advanced sequence.
When a Commit step exists in the Active advanced sequence, you cannot
set the output method to Pulse Voltage or Pulse Current in either
the Commit step (-1) or step 0. When you create an advanced sequence
step, each property you passed to the nidcpower.Session.create_advanced_sequence()
method is reset to its default value for that step unless otherwise specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Related Topics:

Advanced Sequence
Mode

Programming
States

nidcpower.Session.create_advanced_sequence()

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_commit_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_commit_step()

	Parameters:

	set_as_active_step (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the step created with this method is active in the Active advanced sequence.

create_advanced_sequence_step

	
nidcpower.Session.create_advanced_sequence_step(set_as_active_step=True)

	Creates a new advanced sequence step in the advanced sequence specified
by the Active advanced sequence. When you create an advanced sequence
step, each property you passed to the nidcpower.Session.create_advanced_sequence()
method is reset to its default value for that step unless otherwise
specified.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Related Topics:

Advanced Sequence
Mode

Programming
States

nidcpower.Session.create_advanced_sequence()

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].create_advanced_sequence_step()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.create_advanced_sequence_step()

	Parameters:

	set_as_active_step (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether the step created with this method is active in the Active advanced sequence.

delete_advanced_sequence

	
nidcpower.Session.delete_advanced_sequence(sequence_name)

	Deletes a previously created advanced sequence and all the advanced
sequence steps in the advanced sequence.

Support for this Method

You must set the source mode to Sequence to use this method.

Using the nidcpower.Session.set_sequence() method with Advanced Sequence
methods is unsupported.

Related Topics:

Advanced Sequence
Mode

Programming
States

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].delete_advanced_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.delete_advanced_sequence()

	Parameters:

	sequence_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – specifies the name of the sequence to delete.

disable

	
nidcpower.Session.disable()

	This method performs the same actions as the nidcpower.Session.reset()
method, except that this method also immediately sets the
nidcpower.Session.output_enabled property to False.

This method opens the output relay on devices that have an output
relay.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

export_attribute_configuration_buffer

	
nidcpower.Session.export_attribute_configuration_buffer()

	Exports the property configuration of the session to the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DCPower returns
an error.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns:

	Specifies the byte array buffer to be populated with the exported
property configuration.

export_attribute_configuration_file

	
nidcpower.Session.export_attribute_configuration_file(file_path)

	Exports the property configuration of the session to the specified
file.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

This method verifies that the properties you have configured for the
session are valid. If the configuration is invalid, NI‑DCPower returns
an error.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file to contain the exported
property configuration. If you specify an empty or relative path, this
method returns an error.
Default file extension: .nidcpowerconfig

fetch_multiple

	
nidcpower.Session.fetch_multiple(count, timeout=hightime.timedelta(seconds=1.0))

	Returns a list of named tuples (Measurement) that were
previously taken and are stored in the NI-DCPower buffer. This method
should not be used when the nidcpower.Session.measure_when property is
set to ON_DEMAND. You must first call
nidcpower.Session.initiate() before calling this method.

Fields in Measurement:

	voltage (float)

	current (float)

	in_compliance (bool)

	channel (str)

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.fetch_multiple()

	Parameters:

	
	count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of measurements to fetch.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the maximum time allowed for this method to complete. If the method does not complete within this time interval, NI-DCPower returns an error.
Default value: 1.0 second

Note

When setting the timeout interval, ensure you take into account any triggers so that the timeout interval is long enough for your application.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of Measurement

	Returns:

	List of named tuples with fields:

	voltage (float)

	current (float)

	in_compliance (bool)

	channel (str)

fetch_multiple_lcr

	
nidcpower.Session.fetch_multiple_lcr(count, timeout=hightime.timedelta(seconds=1.0))

	Returns a list of previously measured LCRMeasurement instances on the specified channel that have been taken and stored in a buffer.

To use this method:

	Set nidcpower.Session.measure_when property to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER

	Put the channel in the Running state (call nidcpower.Session.initiate())

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].fetch_multiple_lcr()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.fetch_multiple_lcr()

	Parameters:

	
	count (int [https://docs.python.org/3/library/functions.html#int]) – Specifies the number of measurements to fetch.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the maximum time allowed for this method to complete, in seconds.
If the method does not complete within this time interval, NI-DCPower returns an error.
Default value: 1.0 second

Note

When setting the timeout interval, ensure you take into account any triggers so that the timeout interval is long enough for your application.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of LCRMeasurement

	Returns:

	A list of LCRMeasurement instances.

	channel

	
	The channel name associated with this LCR measurement.

	vdc

	float

	The measured DC voltage, in volts.

	idc

	float

	The measured DC current, in amps.

	stimulus_frequency

	float

	The frequency of the LCR test signal, in Hz.

	ac_voltage

	complex

	The measured AC voltage, in volts RMS.

	ac_current

	complex

	The measured AC current, in amps RMS.

	z

	complex

	The complex impedance.

	z_magnitude_and_phase

	tuple of float

	The magnitude, in ohms, and phase angle, in degrees, of the complex impedance.

	y

	complex

	The complex admittance.

	y_magnitude_and_phase

	tuple of float

	The magnitude, in siemens, and phase angle, in degrees, of the complex admittance.

	series_lcr

	LCR

	The inductance, in henrys, the capacitance, in farads, and the resistance, in ohms, as measured using a series circuit model.

	parallel_lcr

	LCR

	The inductance, in henrys, the capacitance, in farads, and the resistance, in ohms, as measured using a parallel circuit model.

	d

	float

	The dissipation factor of the circuit. The dimensionless dissipation factor is directly proportional to how quickly an oscillating system loses energy. D is the reciprocal of Q, the quality factor.

	q

	float

	The quality factor of the circuit. The dimensionless quality factor is inversely proportional to the degree of damping in a system. Q is the reciprocal of D, the dissipation factor.

	measurement_mode

	enums.InstrumentMode

	The measurement mode: SMU - The channel(s) are operating as a power supply/SMU. LCR - The channel(s) are operating as an LCR meter.

	dc_in_compliance

	bool

	Indicates whether the output was in DC compliance at the time the measurement was taken.

	ac_in_compliance

	bool

	Indicates whether the output was in AC compliance at the time the measurement was taken.

	unbalanced

	bool

	Indicates whether the output was unbalanced at the time the measurement was taken.

get_channel_name

	
nidcpower.Session.get_channel_name(index)

	Retrieves the output channelName that corresponds to the requested
index. Use the nidcpower.Session.channel_count property to
determine the upper bound of valid values for index.

	Parameters:

	index (int [https://docs.python.org/3/library/functions.html#int]) – Specifies which channel name to return. The index values begin at
1.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	Returns the channel name that corresponds to index.

get_channel_names

	
nidcpower.Session.get_channel_names(indices)

	Returns a list of channel names for the given channel indices.

	Parameters:

	indices (basic sequence types or str [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]) – Index list for the channels in the session. Valid values are from zero to the total number of channels in the session minus one. The index string can be one of the following formats:

	A comma-separated list—for example, “0,2,3,1”

	A range using a hyphen—for example, “0-3”

	A range using a colon—for example, “0:3 “

You can combine comma-separated lists and ranges that use a hyphen or colon. Both out-of-order and repeated indices are supported (“2,3,0,” “1,2,2,3”). White space characters, including spaces, tabs, feeds, and carriage returns, are allowed between characters. Ranges can be incrementing or decrementing.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns:

	The channel name(s) at the specified indices.

get_ext_cal_last_date_and_time

	
nidcpower.Session.get_ext_cal_last_date_and_time()

	Returns the date and time of the last successful calibration.

	Return type:

	hightime.datetime

	Returns:

	Indicates date and time of the last calibration.

get_ext_cal_last_temp

	
nidcpower.Session.get_ext_cal_last_temp()

	Returns the onboard temperature of the device, in degrees Celsius,
during the last successful external calibration.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the onboard temperature of the device, in degrees Celsius,
during the last successful external calibration.

get_ext_cal_recommended_interval

	
nidcpower.Session.get_ext_cal_recommended_interval()

	Returns the recommended maximum interval, in months, between
external calibrations.

	Return type:

	hightime.timedelta

	Returns:

	Specifies the recommended maximum interval, in months, between
external calibrations.

get_lcr_compensation_data

	
nidcpower.Session.get_lcr_compensation_data()

	Collects previously generated open, short, load, and custom cable compensation data so you can then apply it to LCR measurements with nidcpower.Session.configure_lcr_compensation().

Call this method after you have obtained the compensation data of all types (open, short, load, open custom cable compensation, and short custom cable compensation) you want to apply to your measurements. Pass the compensation data to nidcpower.Session.configure_lcr_compensation()

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].get_lcr_compensation_data()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_compensation_data()

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns:

	The open, short, load, and custom cable compensation data to retrieve.

get_lcr_compensation_last_date_and_time

	
nidcpower.Session.get_lcr_compensation_last_date_and_time(compensation_type)

	Returns the date and time the specified type of compensation data for LCR measurements was most recently generated.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].get_lcr_compensation_last_date_and_time()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_compensation_last_date_and_time()

	Parameters:

	compensation_type (nidcpower.LCRCompensationType) – Specifies the type of compensation for LCR measurements.

	Return type:

	hightime.datetime

	Returns:

	Returns the date and time the specified type of compensation data for LCR measurements was most recently generated.

get_lcr_custom_cable_compensation_data

	
nidcpower.Session.get_lcr_custom_cable_compensation_data()

	This method is deprecated. Use nidcpower.Session.get_lcr_compensation_data()
instead.

Collects previously generated open and short custom cable compensation data so you can then apply it to LCR measurements with nidcpower.Session.configure_lcr_custom_cable_compensation().

Call this method after you have obtained open and short custom cable compensation data. Pass the custom cable compensation data to nidcpower.Session.configure_lcr_custom_cable_compensation()

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].get_lcr_custom_cable_compensation_data()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.get_lcr_custom_cable_compensation_data()

	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	Returns:

	The open and short custom cable compensation data to retrieve.

get_self_cal_last_date_and_time

	
nidcpower.Session.get_self_cal_last_date_and_time()

	Returns the date and time of the oldest successful self-calibration from among the channels in the session.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

	Return type:

	hightime.datetime

	Returns:

	Returns the date and time the device was last calibrated.

get_self_cal_last_temp

	
nidcpower.Session.get_self_cal_last_temp()

	Returns the onboard temperature of the device, in degrees Celsius,
during the oldest successful self-calibration from among the channels in
the session.

For example, if you have a session using channels 1 and 2, and you
perform a self-calibration on channel 1 with a device temperature of 25
degrees Celsius at 2:00, and a self-calibration was performed on channel
2 at 27 degrees Celsius at 3:00 on the same day, this method returns
25 for the temperature parameter.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the onboard temperature of the device, in degrees Celsius,
during the oldest successful calibration.

import_attribute_configuration_buffer

	
nidcpower.Session.import_attribute_configuration_buffer(configuration)

	Imports a property configuration to the session from the specified
configuration buffer.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming
States

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters:

	configuration (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Specifies the byte array buffer that contains the property
configuration to import.

import_attribute_configuration_file

	
nidcpower.Session.import_attribute_configuration_file(file_path)

	Imports a property configuration to the session from the specified
file.

You can export and import session property configurations only between
devices with identical model numbers and the same number of configured
channels.

Support for this Method

Calling this method in Sequence Source
Mode is unsupported.

Channel Mapping Behavior for Multichannel Sessions

When importing and exporting session property configurations between
NI‑DCPower sessions that were initialized with different channels, the
configurations of the exporting channels are mapped to the importing
channels in the order you specify in the channelName input to the
nidcpower.Session.__init__() method.

For example, if your entry for channelName is 0,1 for the exporting
session and 1,2 for the importing session:

	The configuration exported from channel 0 is imported into channel 1.

	The configuration exported from channel 1 is imported into channel 2.

Related Topics:

Programming
States

Using Properties and
Properties

Setting Properties and Properties Before Reading
Them

Note

This method will return an error if the total number of channels
initialized for the exporting session is not equal to the total number
of channels initialized for the importing session.

	Parameters:

	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies the absolute path to the file containing the property
configuration to import. If you specify an empty or relative path, this
method returns an error.
Default File Extension: .nidcpowerconfig

initiate

	
nidcpower.Session.initiate()

	Starts generation or acquisition, causing the specified channel(s) to
leave the Uncommitted state or Committed state and enter the Running
state. To return to the Uncommitted state call the nidcpower.Session.abort()
method. Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for information about the
specific NI-DCPower software states.

Related Topics:

Programming
States

Note

This method will return a Python context manager that will initiate on entering and abort on exit.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].initiate()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.initiate()

lock

	
nidcpower.Session.lock()

	Obtains a multithread lock on the device session. Before doing so, the
software waits until all other execution threads release their locks
on the device session.

Other threads may have obtained a lock on this session for the
following reasons:

	The application called the nidcpower.Session.lock() method.

	A call to NI-DCPower locked the session.

	After a call to the nidcpower.Session.lock() method returns
successfully, no other threads can access the device session until
you call the nidcpower.Session.unlock() method or exit out of the with block when using
lock context manager.

	Use the nidcpower.Session.lock() method and the
nidcpower.Session.unlock() method around a sequence of calls to
instrument driver methods if you require that the device retain its
settings through the end of the sequence.

You can safely make nested calls to the nidcpower.Session.lock() method
within the same thread. To completely unlock the session, you must
balance each call to the nidcpower.Session.lock() method with a call to
the nidcpower.Session.unlock() method.

One method for ensuring there are the same number of unlock method calls as there is lock calls
is to use lock as a context manager

with nidcpower.Session('dev1') as session:
 with session.lock():
 # Calls to session within a single lock context

The first with block ensures the session is closed regardless of any exceptions raised

The second with block ensures that unlock is called regardless of any exceptions raised

	Return type:

	context manager

	Returns:

	When used in a with statement, nidcpower.Session.lock() acts as
a context manager and unlock will be called when the with block is exited

measure

	
nidcpower.Session.measure(measurement_type)

	Returns the measured value of either the voltage or current on the
specified channel. Each call to this method blocks other
method calls until the hardware returns the measurement. To
measure multiple channels, use the nidcpower.Session.measure_multiple()
method.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].measure()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure()

	Parameters:

	measurement_type (nidcpower.MeasurementTypes) – Specifies whether a voltage or current value is measured.
Defined Values:

	VOLTAGE

	The device measures voltage.

	CURRENT

	The device measures current.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the value of the measurement, either in volts for voltage or
amps for current.

measure_multiple

	
nidcpower.Session.measure_multiple()

	Returns a list of named tuples (Measurement) containing the measured voltage
and current values on the specified channel(s). Each call to this method
blocks other method calls until the measurements are returned from the device.
The order of the measurements returned in the array corresponds to the order
on the specified channel(s).

Fields in Measurement:

	voltage (float)

	current (float)

	in_compliance (bool) - Always None

	channel (str)

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].measure_multiple()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure_multiple()

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of Measurement

	Returns:

	List of named tuples with fields:

	voltage (float)

	current (float)

	in_compliance (bool) - Always None

	channel (str)

measure_multiple_lcr

	
nidcpower.Session.measure_multiple_lcr()

	Measures and returns a list of LCRMeasurement instances on the specified channel(s).

To use this method:

	Set nidcpower.Session.instrument_mode property to LCR

	Set nidcpower.Session.measure_when property to ON_DEMAND

	Put the channel(s) in the Running state (call nidcpower.Session.initiate())

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].measure_multiple_lcr()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.measure_multiple_lcr()

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list] of LCRMeasurement

	Returns:

	A list of LCRMeasurement instances.

	channel

	
	The channel name associated with this LCR measurement.

	vdc

	float

	The measured DC voltage, in volts.

	idc

	float

	The measured DC current, in amps.

	stimulus_frequency

	float

	The frequency of the LCR test signal, in Hz.

	ac_voltage

	complex

	The measured AC voltage, in volts RMS.

	ac_current

	complex

	The measured AC current, in amps RMS.

	z

	complex

	The complex impedance.

	z_magnitude_and_phase

	tuple of float

	The magnitude, in ohms, and phase angle, in degrees, of the complex impedance.

	y

	complex

	The complex admittance.

	y_magnitude_and_phase

	tuple of float

	The magnitude, in siemens, and phase angle, in degrees, of the complex admittance.

	series_lcr

	LCR

	The inductance, in henrys, the capacitance, in farads, and the resistance, in ohms, as measured using a series circuit model.

	parallel_lcr

	LCR

	The inductance, in henrys, the capacitance, in farads, and the resistance, in ohms, as measured using a parallel circuit model.

	d

	float

	The dissipation factor of the circuit. The dimensionless dissipation factor is directly proportional to how quickly an oscillating system loses energy. D is the reciprocal of Q, the quality factor.

	q

	float

	The quality factor of the circuit. The dimensionless quality factor is inversely proportional to the degree of damping in a system. Q is the reciprocal of D, the dissipation factor.

	measurement_mode

	enums.InstrumentMode

	The measurement mode: SMU - The channel(s) are operating as a power supply/SMU. LCR - The channel(s) are operating as an LCR meter.

	dc_in_compliance

	bool

	Indicates whether the output was in DC compliance at the time the measurement was taken.

	ac_in_compliance

	bool

	Indicates whether the output was in AC compliance at the time the measurement was taken.

	unbalanced

	bool

	Indicates whether the output was unbalanced at the time the measurement was taken.

perform_lcr_load_compensation

	
nidcpower.Session.perform_lcr_load_compensation(compensation_spots)

	Generates load compensation data for LCR measurements for the test spots you specify.

You must physically configure your LCR circuit with an appropriate reference load to use this method to generate valid load compensation data.

When you call this method:

	The load compensation data is written to the onboard storage of the instrument. Onboard storage can contain only the most recent set of data.

	Most NI-DCPower properties in the session are reset to their default values. Rewrite the values of any properties you want to maintain.

To apply the load compensation data you generate with this method to your LCR measurements, set the nidcpower.Session.lcr_load_compensation_enabled property to True.

Load compensation data are generated only for those specific frequencies you define with this method; load compensation is not interpolated from the specific frequencies you define and applied to other frequencies.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].perform_lcr_load_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_load_compensation()

	Parameters:

	compensation_spots (list [https://docs.python.org/3/library/stdtypes.html#list] of LCRLoadCompensationSpot) – Defines the frequencies and DUT specifications to use for LCR load compensation.

You can specify <=1000 spot frequencies.

	frequency

	The spot frequency, in Hz.

	reference_value_type

	A known specification value of your DUT to use as the basis for load compensation.

	reference_value

	A value that describes the reference_value_type specification. Use as indicated by the reference_value_type option you choose.

perform_lcr_open_compensation

	
nidcpower.Session.perform_lcr_open_compensation(additional_frequencies=None)

	Generates open compensation data for LCR measurements based on a default set of test frequencies and, optionally, additional frequencies you can specify.

You must physically configure an open LCR circuit to use this method to generate valid open compensation data.

When you call this method:

	The open compensation data is written to the onboard storage of the instrument. Onboard storage can contain only the most recent set of data.

	Most NI-DCPower properties in the session are reset to their default values. Rewrite the values of any properties you want to maintain.

To apply the open compensation data you generate with this method to your LCR measurements, set the nidcpower.Session.lcr_open_compensation_enabled property to True.

Corrections for frequencies other than the default frequencies or any additional frequencies you specify are interpolated.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Note

Default Open Compensation Frequencies:
By default, NI-DCPower uses the following frequencies for LCR open compensation:

	10 logarithmic steps at 1 kHz frequency decade

	10 logarithmic steps at 10 kHz frequency decade

	100 logarithmic steps at 100 kHz frequency decade

	100 logarithmic steps at 1 MHz frequency decade

The actual frequencies used depend on the bandwidth of your instrument.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].perform_lcr_open_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_open_compensation()

	Parameters:

	additional_frequencies (list [https://docs.python.org/3/library/stdtypes.html#list] of float [https://docs.python.org/3/library/functions.html#float]) – Defines a further set of frequencies, in addition to the default frequencies, to perform the compensation for. You can specify <=200 additional frequencies.

perform_lcr_open_custom_cable_compensation

	
nidcpower.Session.perform_lcr_open_custom_cable_compensation()

	Generates open custom cable compensation data for LCR measurements.

To use this method, you must physically configure an open LCR circuit to generate valid open custom cable compensation data.

When you call this method:

	The open compensation data is written to the onboard storage of the instrument. Onboard storage can contain only the most recent set of data.

	Most NI-DCPower properties in the session are reset to their default values. Rewrite the values of any properties you want to maintain.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].perform_lcr_open_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_open_custom_cable_compensation()

perform_lcr_short_compensation

	
nidcpower.Session.perform_lcr_short_compensation(additional_frequencies=None)

	Generates short compensation data for LCR measurements based on a default set of test frequencies and, optionally, additional frequencies you can specify.

You must physically configure your LCR circuit with a short to use this method to generate valid short compensation data.

When you call this method:

	The short compensation data is written to the onboard storage of the instrument. Onboard storage can contain only the most recent set of data.

	Most NI-DCPower properties in the session are reset to their default values. Rewrite the values of any properties you want to maintain.

To apply the short compensation data you generate with this method to your LCR measurements, set the nidcpower.Session.lcr_short_compensation_enabled property to True.

Corrections for frequencies other than the default frequencies or any additional frequencies you specify are interpolated.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Note

Default Short Compensation Frequencies:
By default, NI-DCPower uses the following frequencies for LCR short compensation:

	10 logarithmic steps at 1 kHz frequency decade

	10 logarithmic steps at 10 kHz frequency decade

	100 logarithmic steps at 100 kHz frequency decade

	100 logarithmic steps at 1 MHz frequency decade

The actual frequencies used depend on the bandwidth of your instrument.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].perform_lcr_short_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_short_compensation()

	Parameters:

	additional_frequencies (list [https://docs.python.org/3/library/stdtypes.html#list] of float [https://docs.python.org/3/library/functions.html#float]) – Defines a further set of frequencies, in addition to the default frequencies, to perform the compensation for. You can specify <=200 additional frequencies.

perform_lcr_short_custom_cable_compensation

	
nidcpower.Session.perform_lcr_short_custom_cable_compensation()

	Generates short custom cable compensation data for LCR measurements.

To use this method:

	You must physically configure your LCR circuit with a short to generate valid short custom cable compensation data.

	Set nidcpower.Session.lcr_short_custom_cable_compensation_enabled property to True

When you call this method:

	The short compensation data is written to the onboard storage of the instrument. Onboard storage can contain only the most recent set of data.

	Most NI-DCPower properties in the session are reset to their default values. Rewrite the values of any properties you want to maintain.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].perform_lcr_short_custom_cable_compensation()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.perform_lcr_short_custom_cable_compensation()

query_in_compliance

	
nidcpower.Session.query_in_compliance()

	Queries the specified output device to determine if it is operating at
the compliance limit.

The compliance limit is the current limit when the output method is
set to DC_VOLTAGE. If the output is operating at the
compliance limit, the output reaches the current limit before the
desired voltage level. Refer to the nidcpower.Session.ConfigureOutputFunction()
method and the nidcpower.Session.ConfigureCurrentLimit() method for more
information about output method and current limit, respectively.

The compliance limit is the voltage limit when the output method is
set to DC_CURRENT. If the output is operating at the
compliance limit, the output reaches the voltage limit before the
desired current level. Refer to the nidcpower.Session.ConfigureOutputFunction()
method and the nidcpower.Session.ConfigureVoltageLimit() method for more
information about output method and voltage limit, respectively.

Related Topics:

Compliance

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Note

One or more of the referenced methods are not in the Python API for this driver.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_in_compliance()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_in_compliance()

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	Returns whether the device channel is in compliance.

query_latched_output_cutoff_state

	
nidcpower.Session.query_latched_output_cutoff_state(output_cutoff_reason)

	Discovers if an output cutoff limit was exceeded for the specified reason. When an output cutoff is engaged, the output of the channel(s) is disconnected.
If a limit was exceeded, the state is latched until you clear it with the nidcpower.Session.clear_latched_output_cutoff_state() method or the nidcpower.Session.reset() method.

outputCutoffReason specifies the conditions for which an output is disconnected.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_latched_output_cutoff_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_latched_output_cutoff_state()

	Parameters:

	output_cutoff_reason (nidcpower.OutputCutoffReason) – Specifies which output cutoff conditions to query.

	ALL

	Any output cutoff condition was met

	VOLTAGE_OUTPUT_HIGH

	The output exceeded the high cutoff limit for voltage output

	VOLTAGE_OUTPUT_LOW

	The output fell below the low cutoff limit for voltage output

	VOLTAGE_MEASURE_HIGH

	The measured voltage exceeded the high cutoff limit for voltage output

	VOLTAGE_MEASURE_LOW

	The measured voltage fell below the low cutoff limit for voltage output

	CURRENT_MEASURE_HIGH

	The measured current exceeded the high cutoff limit for current output

	CURRENT_MEASURE_LOW

	The measured current fell below the low cutoff limit for current output

	VOLTAGE_CHANGE_HIGH

	The voltage slew rate increased beyond the positive change cutoff for voltage output

	VOLTAGE_CHANGE_LOW

	The voltage slew rate decreased beyond the negative change cutoff for voltage output

	CURRENT_CHANGE_HIGH

	The current slew rate increased beyond the positive change cutoff for current output

	CURRENT_CHANGE_LOW

	The current slew rate decreased beyond the negative change cutoff for current output

	CURRENT_SATURATED

	The measured current saturates the current range

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	Specifies whether an output cutoff has engaged.

	True

	An output cutoff has engaged for the conditions in output cutoff reason.

	False

	No output cutoff has engaged.

query_max_current_limit

	
nidcpower.Session.query_max_current_limit(voltage_level)

	Queries the maximum current limit on a channel if the channel is set to the specified voltageLevel.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_max_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_current_limit()

	Parameters:

	voltage_level (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the voltage level to use when calculating the
maxCurrentLimit.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the maximum current limit that can be set with the specified
voltageLevel.

query_max_voltage_level

	
nidcpower.Session.query_max_voltage_level(current_limit)

	Queries the maximum voltage level on a channel if the channel is set to the specified currentLimit.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_max_voltage_level()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_max_voltage_level()

	Parameters:

	current_limit (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the current limit to use when calculating the
maxVoltageLevel.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the maximum voltage level that can be set on a channel
with the specified currentLimit.

query_min_current_limit

	
nidcpower.Session.query_min_current_limit(voltage_level)

	Queries the minimum current limit on a channel if the channel is set to the specified voltageLevel.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_min_current_limit()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_min_current_limit()

	Parameters:

	voltage_level (float [https://docs.python.org/3/library/functions.html#float]) – Specifies the voltage level to use when calculating the
minCurrentLimit.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the minimum current limit that can be set on a channel
with the specified voltageLevel.

query_output_state

	
nidcpower.Session.query_output_state(output_state)

	Queries the specified channel to determine if the channel
is currently in the state specified by outputState.

Related Topics:

Compliance

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].query_output_state()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.query_output_state()

	Parameters:

	output_state (nidcpower.OutputStates) – Specifies the output state of the channel that is being queried.
Defined Values:

	VOLTAGE

	The device maintains a constant voltage by adjusting the current.

	CURRENT

	The device maintains a constant current by adjusting the voltage.

	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]

	Returns:

	Returns whether the device channel is in the specified output
state.

read_current_temperature

	
nidcpower.Session.read_current_temperature()

	Returns the current onboard temperature, in degrees Celsius, of the
device.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float]

	Returns:

	Returns the onboard temperature, in degrees Celsius, of the device.

reset

	
nidcpower.Session.reset()

	Resets the specified channel(s) to a known state. This method disables power
generation, resets session properties to their default values, commits
the session properties, and leaves the session in the Uncommitted state.
Refer to the Programming
States topic for
more information about NI-DCPower software states.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].reset()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.reset()

reset_device

	
nidcpower.Session.reset_device()

	Resets the device to a known state. The method disables power
generation, resets session properties to their default values, clears
errors such as overtemperature and unexpected loss of auxiliary power,
commits the session properties, and leaves the session in the
Uncommitted state. This method also performs a hard reset on the
device and driver software. This method has the same functionality as
using reset in Measurement & Automation Explorer. Refer to the
Programming
States topic for
more information about NI-DCPower software states.

This will also open the output relay on devices that have an output
relay.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

reset_with_defaults

	
nidcpower.Session.reset_with_defaults()

	Resets the device to a known state. This method disables power
generation, resets session properties to their default values, commits
the session properties, and leaves the session in the
Running
state. In addition to exhibiting the behavior of the nidcpower.Session.reset()
method, this method can assign user-defined default values for
configurable properties from the IVI configuration.

self_cal

	
nidcpower.Session.self_cal()

	Performs a self-calibration upon the specified channel(s).

This method disables the output, performs several internal
calculations, and updates calibration values. The updated calibration
values are written to the device hardware if the
nidcpower.Session.self_calibration_persistence property is set to
WRITE_TO_EEPROM. Refer to the
nidcpower.Session.self_calibration_persistence property topic for more
information about the settings for this property.

When calling nidcpower.Session.self_cal() with the PXIe-4162/4163,
specify all channels of your PXIe-4162/4163 with the channelName input.
You cannot self-calibrate a subset of PXIe-4162/4163 channels.

Refer to the
Self-Calibration topic for
more information about this method.

Related Topics:

Self-Calibration

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].self_cal()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.self_cal()

self_test

	
nidcpower.Session.self_test()

	Performs the device self-test routine and returns the test result(s).
Calling this method implicitly calls the nidcpower.Session.reset() method.

When calling nidcpower.Session.self_test() with the PXIe-4162/4163, specify all
channels of your PXIe-4162/4163 with the channels input of
nidcpower.Session.__init__(). You cannot self test a subset of
PXIe-4162/4163 channels.

Raises SelfTestError on self test failure. Properties on exception object:

	code - failure code from driver

	message - status message from driver

	Self-Test Code

	Description

	0

	Self test passed.

	1

	Self test failed.

send_software_edge_trigger

	
nidcpower.Session.send_software_edge_trigger(trigger)

	Asserts the specified trigger. This method can override an external
edge trigger.

Related Topics:

Triggers

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].send_software_edge_trigger()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.send_software_edge_trigger()

	Parameters:

	trigger (nidcpower.SendSoftwareEdgeTriggerType) – Specifies which trigger to assert.
Defined Values:

	START

	Asserts the Start trigger.

	SOURCE

	Asserts the Source trigger.

	MEASURE

	Asserts the Measure trigger.

	SEQUENCE_ADVANCE

	Asserts the Sequence Advance trigger.

	PULSE

	Asserts the Pulse trigger.

	SHUTDOWN

	Asserts the Shutdown trigger.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

set_sequence

	
nidcpower.Session.set_sequence(values, source_delays)

	Configures a series of voltage or current outputs and corresponding
source delays. The source mode must be set to
Sequence for this
method to take effect.

Refer to the Configuring the Source
Unit topic
in the NI DC Power Supplies and SMUs Help for more information about
how to configure your device.

Use this method in the Uncommitted or Committed programming states.
Refer to the Programming
States topic in
the NI DC Power Supplies and SMUs Help for more information about
NI-DCPower programming states.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].set_sequence()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.set_sequence()

	Parameters:

	
	values (list [https://docs.python.org/3/library/stdtypes.html#list] of float [https://docs.python.org/3/library/functions.html#float]) – Specifies the series of voltage levels or current levels, depending on
the configured output
method.
Valid values:
The valid values for this parameter are defined by the voltage level
range or current level range.

	source_delays (list [https://docs.python.org/3/library/stdtypes.html#list] of float [https://docs.python.org/3/library/functions.html#float]) – Specifies the source delay that follows the configuration of each value
in the sequence.
Valid Values:
The valid values are between 0 and 167 seconds.

unlock

	
nidcpower.Session.unlock()

	Releases a lock that you acquired on an device session using
nidcpower.Session.lock(). Refer to nidcpower.Session.unlock() for additional
information on session locks.

wait_for_event

	
nidcpower.Session.wait_for_event(event_id, timeout=hightime.timedelta(seconds=10.0))

	Waits until the specified channel(s) have generated the specified event.

The session monitors whether each type of event has occurred at least
once since the last time this method or the nidcpower.Session.initiate()
method were called. If an event has only been generated once and you
call this method successively, the method times out. Individual
events must be generated between separate calls of this method.

Note

This method is not supported on all devices. For more information about supported devices, search ni.com for Supported Methods by Device.

Tip

This method can be called on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset,
and then call this method on the result.

Example: my_session.channels[...].wait_for_event()

To call the method on all channels, you can call it directly on the nidcpower.Session.

Example: my_session.wait_for_event()

	Parameters:

	
	event_id (nidcpower.Event) – Specifies which event to wait for.
Defined Values:

	SOURCE_COMPLETE

	Waits for the Source Complete event.

	MEASURE_COMPLETE

	Waits for the Measure Complete event.

	SEQUENCE_ITERATION_COMPLETE

	Waits for the Sequence Iteration Complete event.

	SEQUENCE_ENGINE_DONE

	Waits for the Sequence Engine Done event.

	PULSE_COMPLETE

	Waits for the Pulse Complete event.

	READY_FOR_PULSE_TRIGGER

	Waits for the Ready for Pulse Trigger event.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

	timeout (hightime.timedelta, datetime.timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta], or float in seconds) – Specifies the maximum time allowed for this method to complete, in
seconds. If the method does not complete within this time interval,
NI-DCPower returns an error.

Note

When setting the timeout interval, ensure you take into account any
triggers so that the timeout interval is long enough for your
application.

Properties

active_advanced_sequence

	
nidcpower.Session.active_advanced_sequence

	Specifies the advanced sequence to configure or generate.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].active_advanced_sequence

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Active Advanced Sequence

	C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE

active_advanced_sequence_step

	
nidcpower.Session.active_advanced_sequence_step

	Specifies the advanced sequence step to configure.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].active_advanced_sequence_step

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.active_advanced_sequence_step

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Active Advanced Sequence Step

	C Attribute: NIDCPOWER_ATTR_ACTIVE_ADVANCED_SEQUENCE_STEP

actual_power_allocation

	
nidcpower.Session.actual_power_allocation

	Returns the power, in watts, the device is sourcing on each active channel if the nidcpower.Session.power_allocation_mode property is set to AUTOMATIC or MANUAL.

Valid Values: [0, device per-channel maximum power]

Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

This property returns -1 when the nidcpower.Session.power_allocation_mode property is set to DISABLED.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].actual_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.actual_power_allocation

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Actual Power Allocation

	C Attribute: NIDCPOWER_ATTR_ACTUAL_POWER_ALLOCATION

aperture_time

	
nidcpower.Session.aperture_time

	Specifies the measurement aperture time for the channel configuration. Aperture time is specified in the units set by the nidcpower.Session.aperture_time_units property.
Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements and for information about valid values.
Default Value: 0.01666666 seconds

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Aperture Time

	C Attribute: NIDCPOWER_ATTR_APERTURE_TIME

aperture_time_auto_mode

	
nidcpower.Session.aperture_time_auto_mode

	Automatically optimizes the measurement aperture time according to the actual current range when measurement autorange is enabled.
Optimization accounts for power line frequency when the nidcpower.Session.aperture_time_units property is set to POWER_LINE_CYCLES.

This property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE and the nidcpower.Session.autorange property is enabled.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].aperture_time_auto_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time_auto_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ApertureTimeAutoMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Aperture Time Auto Mode

	C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_AUTO_MODE

aperture_time_units

	
nidcpower.Session.aperture_time_units

	Specifies the units of the nidcpower.Session.aperture_time property for the channel configuration.
Refer to the Aperture Time topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements and for information about valid values.
Default Value: SECONDS

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.aperture_time_units

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ApertureTimeUnits

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Aperture Time Units

	C Attribute: NIDCPOWER_ATTR_APERTURE_TIME_UNITS

autorange

	
nidcpower.Session.autorange

	Specifies whether the hardware automatically selects the best range to measure the signal. Note the highest range the algorithm uses is dependent on the corresponding limit range property. The algorithm the hardware uses can be controlled using the nidcpower.Session.autorange_aperture_time_mode property.

Note

Autoranging begins at module startup and remains active until the module is reconfigured or reset. This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Autorange

	C Attribute: NIDCPOWER_ATTR_AUTORANGE

autorange_aperture_time_mode

	
nidcpower.Session.autorange_aperture_time_mode

	Specifies whether the aperture time used for the measurement autorange algorithm is determined automatically or customized using the nidcpower.Session.autorange_minimum_aperture_time property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_aperture_time_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_aperture_time_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutorangeApertureTimeMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Aperture Time Mode

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_APERTURE_TIME_MODE

autorange_behavior

	
nidcpower.Session.autorange_behavior

	Specifies the algorithm the hardware uses for measurement autoranging.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutorangeBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Behavior

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_BEHAVIOR

autorange_maximum_delay_after_range_change

	
nidcpower.Session.autorange_maximum_delay_after_range_change

	Balances between settling time and maximum measurement time by specifying the maximum time delay between when a range change occurs and when measurements resume.
Valid Values: The minimum and maximum values of this property are hardware-dependent.
PXIe-4135/4136/4137: 0 to 9 seconds
PXIe-4138/4139: 0 to 9 seconds
PXIe-4147: 0 to 9 seconds
PXIe-4162/4163: 0 to 0.1 seconds.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_maximum_delay_after_range_change

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_maximum_delay_after_range_change

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Maximum Delay After Range Change

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_MAXIMUM_DELAY_AFTER_RANGE_CHANGE

autorange_minimum_aperture_time

	
nidcpower.Session.autorange_minimum_aperture_time

	Specifies the measurement autorange aperture time used for the measurement autorange algorithm. The aperture time is specified in the units set by the nidcpower.Session.autorange_minimum_aperture_time_units property. This value will typically be smaller than the aperture time used for measurements.

Note

For smaller ranges, the value is scaled up to account for noise. The factor used to scale the value is derived from the module capabilities. This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME

autorange_minimum_aperture_time_units

	
nidcpower.Session.autorange_minimum_aperture_time_units

	Specifies the units of the nidcpower.Session.autorange_minimum_aperture_time property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_aperture_time_units

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_aperture_time_units

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ApertureTimeUnits

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Minimum Aperture Time Units

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_APERTURE_TIME_UNITS

autorange_minimum_current_range

	
nidcpower.Session.autorange_minimum_current_range

	Specifies the lowest range used during measurement autoranging. Limiting the lowest range used during autoranging can improve the speed of the autoranging algorithm and minimize frequent and unpredictable range changes for noisy signals.

Note

The maximum range used is the range that includes the value specified in the compliance limit property, nidcpower.Session.voltage_limit_range property or nidcpower.Session.current_limit_range property, depending on the selected nidcpower.Session.output_function. This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_current_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Minimum Current Range

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_CURRENT_RANGE

autorange_minimum_voltage_range

	
nidcpower.Session.autorange_minimum_voltage_range

	Specifies the lowest range used during measurement autoranging. The maximum range used is range that includes the value specified in the compliance limit property. Limiting the lowest range used during autoranging can improve the speed of the autoranging algorithm and/or minimize thrashing between ranges for noisy signals.

Note

The maximum range used is the range that includes the value specified in the compliance limit property, nidcpower.Session.voltage_limit_range property or nidcpower.Session.current_limit_range property, depending on the selected nidcpower.Session.output_function. This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_minimum_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_minimum_voltage_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Minimum Voltage Range

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_MINIMUM_VOLTAGE_RANGE

autorange_threshold_mode

	
nidcpower.Session.autorange_threshold_mode

	Specifies thresholds used during autoranging to determine when range changing occurs.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].autorange_threshold_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.autorange_threshold_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutorangeThresholdMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Autorange Threshold Mode

	C Attribute: NIDCPOWER_ATTR_AUTORANGE_THRESHOLD_MODE

auto_zero

	
nidcpower.Session.auto_zero

	Specifies the auto-zero method to use on the device.
Refer to the NI PXI-4132 Measurement Configuration and Timing and Auto Zero topics for more information about how to configure your measurements.
Default Value: The default value for the NI PXI-4132 is ON. The default value for all other devices is OFF, which is the only supported value for these devices.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].auto_zero

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.auto_zero

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.AutoZero

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Auto Zero

	C Attribute: NIDCPOWER_ATTR_AUTO_ZERO

auxiliary_power_source_available

	
nidcpower.Session.auxiliary_power_source_available

	Indicates whether an auxiliary power source is connected to the device.
A value of False may indicate that the auxiliary input fuse has blown. Refer to the Detecting Internal/Auxiliary Power topic in the NI DC Power Supplies and SMUs Help for more information about internal and auxiliary power.
power source to generate power. Use the nidcpower.Session.power_source_in_use property to retrieve this information.

Note

This property does not necessarily indicate if the device is using the auxiliary

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Auxiliary Power Source Available

	C Attribute: NIDCPOWER_ATTR_AUXILIARY_POWER_SOURCE_AVAILABLE

cable_length

	
nidcpower.Session.cable_length

	Specifies how to apply cable compensation data for instruments that support LCR functionality.
Supported instruments use cable compensation for the following operations:

SMU mode: to stabilize DC current sourcing in the two smallest current ranges.
LCR mode: to compensate for the effects of cabling on LCR measurements.

For NI standard options, select the length of your NI cable to apply compensation data for a typical cable of that type.
For custom options, choose the source of the custom cable compensation data. You must then generate the custom cable compensation data.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].cable_length

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.cable_length

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.CableLength

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Device Specific:LCR:Cable Length

	C Attribute: NIDCPOWER_ATTR_CABLE_LENGTH

channel_count

	
nidcpower.Session.channel_count

	Indicates the number of channels that NI-DCPower supports for the instrument that was chosen when the current session was opened. For channel-based properties, the IVI engine maintains a separate cache value for each channel.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Channel Count

	C Attribute: NIDCPOWER_ATTR_CHANNEL_COUNT

compliance_limit_symmetry

	
nidcpower.Session.compliance_limit_symmetry

	Specifies whether compliance limits for current generation and voltage
generation for the device are applied symmetrically about 0 V and 0 A or
asymmetrically with respect to 0 V and 0 A.
When set to SYMMETRIC, voltage limits and current limits are set
using a single property with a positive value. The resulting range is
bounded by this positive value and its opposite.
When set to ASYMMETRIC, you must separately set a limit high and a
limit low using distinct properties.
For asymmetric limits, the range bounded by the limit high and limit low
must include zero.
Default Value: Symmetric
Related Topics:
Compliance;
Ranges;
Changing Ranges;
Overranging

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].compliance_limit_symmetry

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.compliance_limit_symmetry

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ComplianceLimitSymmetry

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Compliance Limit Symmetry

	C Attribute: NIDCPOWER_ATTR_COMPLIANCE_LIMIT_SYMMETRY

conduction_voltage_mode

	
nidcpower.Session.conduction_voltage_mode

	Specifies whether the conduction voltage feature is enabled on the specified channel(s).

	When the conduction voltage feature is enabled,
	
	The instrument will not begin sinking on the specified channel(s) until the voltage at the input of the specified channel(s) rises above nidcpower.Session.conduction_voltage_on_threshold

	The instrument will stop sinking if the voltage at the input of the specified channel(s) falls below nidcpower.Session.conduction_voltage_off_threshold.

	When the conduction voltage feature is disabled,
	
	The instrument will start sinking regardless of the voltage at the input of the specified channel(s).

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.conduction_voltage_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.ConductionVoltageMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Conduction Voltage:Mode

	C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_MODE

conduction_voltage_off_threshold

	
nidcpower.Session.conduction_voltage_off_threshold

	Specifies the minimum voltage, in volts, at the input of the specified channel(s) below which the instrument stops sinking on the specified channel(s) when the conduction voltage feature is enabled.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_off_threshold

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.conduction_voltage_off_threshold

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Conduction Voltage:Off Threshold

	C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_OFF_THRESHOLD

conduction_voltage_on_threshold

	
nidcpower.Session.conduction_voltage_on_threshold

	Specifies the required minimum voltage, in volts, at the input of the specified channel(s) before the instrument starts sinking on the specified channel(s) when the conduction voltage feature is enabled.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].conduction_voltage_on_threshold

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.conduction_voltage_on_threshold

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Conduction Voltage:On Threshold

	C Attribute: NIDCPOWER_ATTR_CONDUCTION_VOLTAGE_ON_THRESHOLD

current_compensation_frequency

	
nidcpower.Session.current_compensation_frequency

	The frequency at which a pole-zero pair is added to the system when the channel is in Constant Current mode.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_compensation_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Compensation Frequency

	C Attribute: NIDCPOWER_ATTR_CURRENT_COMPENSATION_FREQUENCY

current_gain_bandwidth

	
nidcpower.Session.current_gain_bandwidth

	The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles and zeroes. This property takes effect when the channel is in Constant Current mode.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_gain_bandwidth

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Gain Bandwidth

	C Attribute: NIDCPOWER_ATTR_CURRENT_GAIN_BANDWIDTH

current_level

	
nidcpower.Session.current_level

	Specifies the current level, in amps, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.

Valid Values: The valid values for this property are defined by the values to which the nidcpower.Session.current_level_range property is set.

Note

The channel must be enabled for the specified current level to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL

current_level_autorange

	
nidcpower.Session.current_level_autorange

	Specifies whether NI-DCPower automatically selects the current level range based on the desired current level for the specified channels.
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.current_level_range property. If you change the nidcpower.Session.current_level_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.current_level_range property was set to (or the default value if the property was never set) and uses that value as the current level range.
Query the nidcpower.Session.current_level_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.current_level_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
Default Value: OFF

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_autorange

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Autorange

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_AUTORANGE

current_level_falling_slew_rate

	
nidcpower.Session.current_level_falling_slew_rate

	Specifies the rate of decrease, in amps per microsecond, to apply to the absolute magnitude of the current level of the specified channel(s).
This property is applicable only if you set the nidcpower.Session.output_function property to DC_CURRENT.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_falling_slew_rate

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_falling_slew_rate

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Slew Rate:Falling

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_FALLING_SLEW_RATE

current_level_range

	
nidcpower.Session.current_level_range

	Specifies the current level range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the current level. Use the nidcpower.Session.current_level_autorange property to enable automatic selection of the current level range.
The nidcpower.Session.current_level_range property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.

For valid ranges, refer to the specifications for your instrument.

Note

The channel must be enabled for the specified current level range to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Range

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RANGE

current_level_rising_slew_rate

	
nidcpower.Session.current_level_rising_slew_rate

	Specifies the rate of increase, in amps per microsecond, to apply to the absolute magnitude of the current level of the specified channel(s).
This property is applicable only if you set the nidcpower.Session.output_function property to DC_CURRENT.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_level_rising_slew_rate

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_level_rising_slew_rate

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Current Level Slew Rate:Rising

	C Attribute: NIDCPOWER_ATTR_CURRENT_LEVEL_RISING_SLEW_RATE

current_limit

	
nidcpower.Session.current_limit

	Specifies the current limit, in amps, that the output cannot exceed when generating the desired voltage level on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.

Valid Values: The valid values for this property are defined by the values to which nidcpower.Session.current_limit_range property is set.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT

current_limit_autorange

	
nidcpower.Session.current_limit_autorange

	Specifies whether NI-DCPower automatically selects the current limit range based on the desired current limit for the specified channel(s).
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.current_limit_range property. If you change this property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.current_limit_range property was set to (or the default value if the property was never set) and uses that value as the current limit range.
Query the nidcpower.Session.current_limit_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.current_limit_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
Default Value: OFF

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_autorange

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Autorange

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_AUTORANGE

current_limit_behavior

	
nidcpower.Session.current_limit_behavior

	
Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.CurrentLimitBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_BEHAVIOR

current_limit_high

	
nidcpower.Session.current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired voltage on the specified channel(s).
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to DC_VOLTAGE.
You must also specify a nidcpower.Session.current_limit_low to complete the asymmetric
range.
Valid Values: [1% of nidcpower.Session.current_limit_range, nidcpower.Session.current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit High

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_HIGH

current_limit_low

	
nidcpower.Session.current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired voltage on the specified channel(s).
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to DC_VOLTAGE.
You must also specify a nidcpower.Session.current_limit_high to complete the asymmetric
range.
Valid Values: [-nidcpower.Session.current_limit_range, -1% of nidcpower.Session.current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Low

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_LOW

current_limit_range

	
nidcpower.Session.current_limit_range

	Specifies the current limit range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the current limit. Use the nidcpower.Session.current_limit_autorange property to enable automatic selection of the current limit range.
The nidcpower.Session.current_limit_range property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.

For valid ranges, refer to the specifications for your instrument.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_limit_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Current Limit Range

	C Attribute: NIDCPOWER_ATTR_CURRENT_LIMIT_RANGE

current_pole_zero_ratio

	
nidcpower.Session.current_pole_zero_ratio

	The ratio of the pole frequency to the zero frequency when the channel is in Constant Current mode.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].current_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.current_pole_zero_ratio

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Current:Pole-Zero Ratio

	C Attribute: NIDCPOWER_ATTR_CURRENT_POLE_ZERO_RATIO

dc_noise_rejection

	
nidcpower.Session.dc_noise_rejection

	Determines the relative weighting of samples in a measurement. Refer to the NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise Rejection topic in the NI DC Power Supplies and SMUs Help for more information about noise rejection.
Default Value: NORMAL

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].dc_noise_rejection

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.dc_noise_rejection

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.DCNoiseRejection

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:DC Noise Rejection

	C Attribute: NIDCPOWER_ATTR_DC_NOISE_REJECTION

digital_edge_measure_trigger_input_terminal

	
nidcpower.Session.digital_edge_measure_trigger_input_terminal

	Specifies the input terminal for the Measure trigger. This property is used only when the nidcpower.Session.measure_trigger_type property is set to DIGITAL_EDGE.
for this property.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_measure_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_measure_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_MEASURE_TRIGGER_INPUT_TERMINAL

digital_edge_pulse_trigger_input_terminal

	
nidcpower.Session.digital_edge_pulse_trigger_input_terminal

	Specifies the input terminal for the Pulse trigger. This property is used only when the nidcpower.Session.pulse_trigger_type property is set to digital edge.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_pulse_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_pulse_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_PULSE_TRIGGER_INPUT_TERMINAL

digital_edge_sequence_advance_trigger_input_terminal

	
nidcpower.Session.digital_edge_sequence_advance_trigger_input_terminal

	Specifies the input terminal for the Sequence Advance trigger. Use this property only when the nidcpower.Session.sequence_advance_trigger_type property is set to DIGITAL_EDGE.
the NI DC Power Supplies and SMUs Help for information about supported devices.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_sequence_advance_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_sequence_advance_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SEQUENCE_ADVANCE_TRIGGER_INPUT_TERMINAL

digital_edge_shutdown_trigger_input_terminal

	
nidcpower.Session.digital_edge_shutdown_trigger_input_terminal

	Specifies the input terminal for the Shutdown trigger. This property is used only when the nidcpower.Session.shutdown_trigger_type property is set to digital edge.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_shutdown_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_shutdown_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Shutdown Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SHUTDOWN_TRIGGER_INPUT_TERMINAL

digital_edge_source_trigger_input_terminal

	
nidcpower.Session.digital_edge_source_trigger_input_terminal

	Specifies the input terminal for the Source trigger. Use this property only when the nidcpower.Session.source_trigger_type property is set to DIGITAL_EDGE.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_source_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_source_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_SOURCE_TRIGGER_INPUT_TERMINAL

digital_edge_start_trigger_input_terminal

	
nidcpower.Session.digital_edge_start_trigger_input_terminal

	Specifies the input terminal for the Start trigger. Use this property only when the nidcpower.Session.start_trigger_type property is set to DIGITAL_EDGE.
You can specify any valid input terminal for this property. Valid terminals are listed in Measurement & Automation Explorer under the Device Routes tab.
Input terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0. The input terminal can also be a terminal from another device. For example, you can set the input terminal on Dev1 to be /Dev2/SourceCompleteEvent.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].digital_edge_start_trigger_input_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.digital_edge_start_trigger_input_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Digital Edge:Input Terminal

	C Attribute: NIDCPOWER_ATTR_DIGITAL_EDGE_START_TRIGGER_INPUT_TERMINAL

driver_setup

	
nidcpower.Session.driver_setup

	Indicates the Driver Setup string that you specified when initializing the driver.
Some cases exist where you must specify the instrument driver options at initialization time. An example of this case is specifying a particular device model from among a family of devices that the driver supports. This property is useful when simulating a device. You can specify the driver-specific options through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__() method or through the IVI Configuration Utility.
You can specify driver-specific options through the DriverSetup keyword in the optionsString parameter in the nidcpower.Session.__init__() method. If you do not specify a Driver Setup string, this property returns an empty string.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Driver Setup

	C Attribute: NIDCPOWER_ATTR_DRIVER_SETUP

exported_measure_trigger_output_terminal

	
nidcpower.Session.exported_measure_trigger_output_terminal

	Specifies the output terminal for exporting the Measure trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_measure_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_measure_trigger_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_MEASURE_TRIGGER_OUTPUT_TERMINAL

exported_pulse_trigger_output_terminal

	
nidcpower.Session.exported_pulse_trigger_output_terminal

	Specifies the output terminal for exporting the Pulse trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_pulse_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_pulse_trigger_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_PULSE_TRIGGER_OUTPUT_TERMINAL

exported_sequence_advance_trigger_output_terminal

	
nidcpower.Session.exported_sequence_advance_trigger_output_terminal

	Specifies the output terminal for exporting the Sequence Advance trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_sequence_advance_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_sequence_advance_trigger_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_SEQUENCE_ADVANCE_TRIGGER_OUTPUT_TERMINAL

exported_source_trigger_output_terminal

	
nidcpower.Session.exported_source_trigger_output_terminal

	Specifies the output terminal for exporting the Source trigger.
Refer to the Device Routes tab in MAX for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_source_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_source_trigger_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_SOURCE_TRIGGER_OUTPUT_TERMINAL

exported_start_trigger_output_terminal

	
nidcpower.Session.exported_start_trigger_output_terminal

	Specifies the output terminal for exporting the Start trigger.
Refer to the Device Routes tab in Measurement & Automation Explorer (MAX) for a list of the terminals available on your device.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].exported_start_trigger_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.exported_start_trigger_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Export Output Terminal

	C Attribute: NIDCPOWER_ATTR_EXPORTED_START_TRIGGER_OUTPUT_TERMINAL

fetch_backlog

	
nidcpower.Session.fetch_backlog

	Returns the number of measurements acquired that have not been fetched yet.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].fetch_backlog

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.fetch_backlog

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Fetch Backlog

	C Attribute: NIDCPOWER_ATTR_FETCH_BACKLOG

instrument_firmware_revision

	
nidcpower.Session.instrument_firmware_revision

	Contains the firmware revision information for the device you are currently using.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].instrument_firmware_revision

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_firmware_revision

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Firmware Revision

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_FIRMWARE_REVISION

instrument_manufacturer

	
nidcpower.Session.instrument_manufacturer

	Contains the name of the manufacturer for the device you are currently using.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].instrument_manufacturer

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_manufacturer

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Manufacturer

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MANUFACTURER

instrument_mode

	
nidcpower.Session.instrument_mode

	Specifies the mode of operation for an instrument channel for instruments that support multiple modes.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].instrument_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.InstrumentMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Instrument Mode

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODE

instrument_model

	
nidcpower.Session.instrument_model

	Contains the model number or name of the device that you are currently using.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].instrument_model

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.instrument_model

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Model

	C Attribute: NIDCPOWER_ATTR_INSTRUMENT_MODEL

interlock_input_open

	
nidcpower.Session.interlock_input_open

	Indicates whether the safety interlock circuit is open.
Refer to the Safety Interlock topic in the NI DC Power Supplies and SMUs Help for more information about the safety interlock circuit.
about supported devices.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].interlock_input_open

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.interlock_input_open

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Interlock Input Open

	C Attribute: NIDCPOWER_ATTR_INTERLOCK_INPUT_OPEN

io_resource_descriptor

	
nidcpower.Session.io_resource_descriptor

	Indicates the resource descriptor NI-DCPower uses to identify the physical device.
If you initialize NI-DCPower with a logical name, this property contains the resource descriptor that corresponds to the entry in the IVI Configuration utility.
If you initialize NI-DCPower with the resource descriptor, this property contains that value.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Resource Descriptor

	C Attribute: NIDCPOWER_ATTR_IO_RESOURCE_DESCRIPTOR

isolation_state

	
nidcpower.Session.isolation_state

	Defines whether the channel is isolated.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].isolation_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.isolation_state

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Isolation State

	C Attribute: NIDCPOWER_ATTR_ISOLATION_STATE

lcr_actual_load_reactance

	
nidcpower.Session.lcr_actual_load_reactance

	Specifies the actual reactance, in ohms, of the load used for load LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_actual_load_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_actual_load_reactance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:LCR Actual Load Reactance

	C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_REACTANCE

lcr_actual_load_resistance

	
nidcpower.Session.lcr_actual_load_resistance

	Specifies the actual resistance, in ohms, of the load used for load LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_actual_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_actual_load_resistance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:LCR Actual Load Resistance

	C Attribute: NIDCPOWER_ATTR_LCR_ACTUAL_LOAD_RESISTANCE

lcr_ac_dither_enabled

	
nidcpower.Session.lcr_ac_dither_enabled

	Specifies whether dithering is enabled during LCR measurements.
Dithering adds out-of-band noise to improve measurements of small voltage and current signals.

Note

Hardware is only warranted to meet its accuracy specs with dither enabled. You can disable dither if the added noise interferes with your device-under-test.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_ac_dither_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_ac_dither_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Advanced:Dither Enabled

	C Attribute: NIDCPOWER_ATTR_LCR_AC_DITHER_ENABLED

lcr_ac_electrical_cable_length_delay

	
nidcpower.Session.lcr_ac_electrical_cable_length_delay

	Specifies the one-way electrical length delay of the cable, in seconds.
The default value depends on nidcpower.Session.cable_length.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_ac_electrical_cable_length_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_ac_electrical_cable_length_delay

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:LCR AC Electrical Cable Length Delay

	C Attribute: NIDCPOWER_ATTR_LCR_AC_ELECTRICAL_CABLE_LENGTH_DELAY

lcr_automatic_level_control

	
nidcpower.Session.lcr_automatic_level_control

	Specifies whether the channel actively attempts to maintain a constant test voltage or current across the DUT for LCR measurements.
The use of voltage or current depends on the test signal you configure with the nidcpower.Session.lcr_stimulus_function property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_automatic_level_control

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_automatic_level_control

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Automatic Level Control

	C Attribute: NIDCPOWER_ATTR_LCR_AUTOMATIC_LEVEL_CONTROL

lcr_current_amplitude

	
nidcpower.Session.lcr_current_amplitude

	Specifies the amplitude, in amps RMS, of the AC current test signal applied to the DUT for LCR measurements.
This property applies when the nidcpower.Session.lcr_stimulus_function property is set to CURRENT.

Valid Values: 7.08e-9 A RMS to 0.707 A RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for your instrument for more information.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_current_amplitude

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_current_amplitude

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Current Amplitude

	C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_AMPLITUDE

lcr_current_range

	
nidcpower.Session.lcr_current_range

	Specifies the current range, in amps RMS, for the specified channel(s).
The range defines the valid values to which you can set the nidcpower.Session.lcr_current_amplitude.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_current_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Advanced:Current Range

	C Attribute: NIDCPOWER_ATTR_LCR_CURRENT_RANGE

lcr_custom_measurement_time

	
nidcpower.Session.lcr_custom_measurement_time

	Specifies the LCR measurement aperture time for a channel, in seconds,
when the nidcpower.Session.lcr_measurement_time property is set to CUSTOM.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_custom_measurement_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_custom_measurement_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Custom Measurement Time

	C Attribute: NIDCPOWER_ATTR_LCR_CUSTOM_MEASUREMENT_TIME

lcr_dc_bias_automatic_level_control

	
nidcpower.Session.lcr_dc_bias_automatic_level_control

	Specifies whether the channel actively maintains a constant DC bias voltage or current across the DUT for LCR measurements.
To use this property, you must configure a DC bias by 1) selecting an nidcpower.Session.lcr_dc_bias_source and 2) depending on the DC bias source you choose, setting either the nidcpower.Session.lcr_dc_bias_voltage_level or nidcpower.Session.lcr_dc_bias_current_level.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_automatic_level_control

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_automatic_level_control

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Automatic Level Control

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_AUTOMATIC_LEVEL_CONTROL

lcr_dc_bias_current_level

	
nidcpower.Session.lcr_dc_bias_current_level

	Specifies the DC bias current level, in amps, when the nidcpower.Session.lcr_dc_bias_source property is set to CURRENT.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_current_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Current Level

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_LEVEL

lcr_dc_bias_current_range

	
nidcpower.Session.lcr_dc_bias_current_range

	Specifies the DC Bias current range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the nidcpower.Session.lcr_dc_bias_current_level.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_current_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_current_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Advanced:Current Range

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_CURRENT_RANGE

lcr_dc_bias_source

	
nidcpower.Session.lcr_dc_bias_source

	Specifies how to apply DC bias for LCR measurements.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_source

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRDCBiasSource

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Source

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_SOURCE

lcr_dc_bias_transient_response

	
nidcpower.Session.lcr_dc_bias_transient_response

	For instruments in LCR mode, determines whether NI-DCPower automatically calculates and applies the transient response values for DC bias or applies the transient response you set manually.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Related Topics: Transient Response

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_transient_response

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_transient_response

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRDCBiasTransientResponse

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Advanced:Transient Response

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_TRANSIENT_RESPONSE

lcr_dc_bias_voltage_level

	
nidcpower.Session.lcr_dc_bias_voltage_level

	Specifies the DC bias voltage level, in volts, when the nidcpower.Session.lcr_dc_bias_source property is set to VOLTAGE.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_voltage_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Voltage Level

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_LEVEL

lcr_dc_bias_voltage_range

	
nidcpower.Session.lcr_dc_bias_voltage_range

	Specifies the DC Bias voltage range, in volts, for the specified channel(s).
The range defines the valid values to which you can set the nidcpower.Session.lcr_dc_bias_voltage_level.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_dc_bias_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_dc_bias_voltage_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:DC Bias:Advanced:Voltage Range

	C Attribute: NIDCPOWER_ATTR_LCR_DC_BIAS_VOLTAGE_RANGE

lcr_frequency

	
nidcpower.Session.lcr_frequency

	Specifies the frequency of the AC test signal applied to the DUT for LCR measurements.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Frequency

	C Attribute: NIDCPOWER_ATTR_LCR_FREQUENCY

lcr_impedance_auto_range

	
nidcpower.Session.lcr_impedance_auto_range

	Defines whether an instrument in LCR mode automatically selects the best impedance range for each given LCR measurement.

Impedance autoranging may be enabled only when both:

	The nidcpower.Session.source_mode property is set to SINGLE_POINT

	nidcpower.Session.measure_when is set to a value other than ON_MEASURE_TRIGGER

You can read nidcpower.Session.lcr_impedance_range back after a measurement to determine the actual range used.

When enabled, impedance autoranging overrides impedance range settings you configure manually with any other properties.

When using a load with unknown impedance, you can set this property to ON to determine the correct impedance range for the load. When you know the load impedance, you can achieve faster performance by setting this property to OFF and setting nidcpower.Session.lcr_impedance_range_source to LOAD_CONFIGURATION.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_auto_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_auto_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Impedance Autorange

	C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_AUTO_RANGE

lcr_impedance_range

	
nidcpower.Session.lcr_impedance_range

	Specifies the impedance range the channel uses for LCR measurements.

Valid Values: 0 ohms to +inf ohms

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Impedance Range

	C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE

lcr_impedance_range_source

	
nidcpower.Session.lcr_impedance_range_source

	Specifies how the impedance range for LCR measurements is determined.

“nidcpower.Session.LCR_IMPEDANCE_AUTORANGE overrides any impedance range determined by this property.

“

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Note

One or more of the referenced properties are not in the Python API for this driver.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_impedance_range_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_impedance_range_source

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRImpedanceRangeSource

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Advanced:Impedance Range Source

	C Attribute: NIDCPOWER_ATTR_LCR_IMPEDANCE_RANGE_SOURCE

lcr_load_capacitance

	
nidcpower.Session.lcr_load_capacitance

	Specifies the load capacitance, in farads and assuming a series model, of the DUT in order to compute the impedance range when the nidcpower.Session.lcr_impedance_range_source property is set to LOAD_CONFIGURATION.

Valid values: (0 farads, +inf farads)
0 is a special value that signifies +inf farads.

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_capacitance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_capacitance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Advanced:Load Capacitance

	C Attribute: NIDCPOWER_ATTR_LCR_LOAD_CAPACITANCE

lcr_load_compensation_enabled

	
nidcpower.Session.lcr_load_compensation_enabled

	Specifies whether to apply load LCR compensation data to LCR measurements.
Both the nidcpower.Session.lcr_open_compensation_enabled and nidcpower.Session.lcr_short_compensation_enabled properties must be set to True in order to set this property to True.

Use the nidcpower.Session.lcr_open_short_load_compensation_data_source property to define where the load compensation data that is applied to LCR measurements comes from.

Note

Load compensation data are applied only for those specific frequencies you define with nidcpower.Session.perform_lcr_load_compensation();
load compensation is not interpolated from the specific frequencies you define and applied to other frequencies.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_compensation_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Load:Enabled

	C Attribute: NIDCPOWER_ATTR_LCR_LOAD_COMPENSATION_ENABLED

lcr_load_inductance

	
nidcpower.Session.lcr_load_inductance

	Specifies the load inductance, in henrys and assuming a series model, of the DUT in order to compute the impedance range when the nidcpower.Session.lcr_impedance_range_source property is set to LOAD_CONFIGURATION.

Valid values: [0 henrys, +inf henrys)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_inductance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_inductance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Advanced:Load Inductance

	C Attribute: NIDCPOWER_ATTR_LCR_LOAD_INDUCTANCE

lcr_load_resistance

	
nidcpower.Session.lcr_load_resistance

	Specifies the load resistance, in ohms and assuming a series model, of the DUT in order to compute the impedance range when the nidcpower.Session.lcr_impedance_range_source property is set to LOAD_CONFIGURATION.

Valid values: [0 ohms, +inf ohms)

Default Value: Search ni.com for Supported Properties by Device for the default value by instrument

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_load_resistance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Impedance Range:Advanced:Load Resistance

	C Attribute: NIDCPOWER_ATTR_LCR_LOAD_RESISTANCE

lcr_measured_load_reactance

	
nidcpower.Session.lcr_measured_load_reactance

	Specifies the reactance, in ohms, of the load used for load LCR compensation as measured by the instrument.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measured_load_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measured_load_reactance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Load:Measured Reactance

	C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_REACTANCE

lcr_measured_load_resistance

	
nidcpower.Session.lcr_measured_load_resistance

	Specifies the resistance, in ohms, of the load used for load LCR compensation as measured by the instrument.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measured_load_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measured_load_resistance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Load:Measured Resistance

	C Attribute: NIDCPOWER_ATTR_LCR_MEASURED_LOAD_RESISTANCE

lcr_measurement_time

	
nidcpower.Session.lcr_measurement_time

	Selects a general aperture time profile for LCR measurements. The actual duration of each profile depends on the frequency of the LCR test signal.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_measurement_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_measurement_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRMeasurementTime

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Measurement Time

	C Attribute: NIDCPOWER_ATTR_LCR_MEASUREMENT_TIME

lcr_open_compensation_enabled

	
nidcpower.Session.lcr_open_compensation_enabled

	Specifies whether to apply open LCR compensation data to LCR measurements.
Use the nidcpower.Session.lcr_open_short_load_compensation_data_source property to define where the open compensation data that is applied to LCR measurements comes from.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_compensation_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Open:Enabled

	C Attribute: NIDCPOWER_ATTR_LCR_OPEN_COMPENSATION_ENABLED

lcr_open_conductance

	
nidcpower.Session.lcr_open_conductance

	Specifies the conductance, in siemens, of the circuit used for open LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_conductance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_conductance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Open:Conductance

	C Attribute: NIDCPOWER_ATTR_LCR_OPEN_CONDUCTANCE

lcr_open_short_load_compensation_data_source

	
nidcpower.Session.lcr_open_short_load_compensation_data_source

	Specifies the source of the LCR compensation data NI-DCPower applies to LCR measurements.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_short_load_compensation_data_source

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_short_load_compensation_data_source

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCROpenShortLoadCompensationDataSource

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:LCR Open/Short/Load Compensation Data Source

	C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SHORT_LOAD_COMPENSATION_DATA_SOURCE

lcr_open_susceptance

	
nidcpower.Session.lcr_open_susceptance

	Specifies the susceptance, in siemens, of the circuit used for open LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_open_susceptance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_open_susceptance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Open:Susceptance

	C Attribute: NIDCPOWER_ATTR_LCR_OPEN_SUSCEPTANCE

lcr_short_compensation_enabled

	
nidcpower.Session.lcr_short_compensation_enabled

	Specifies whether to apply short LCR compensation data to LCR measurements.
Use the nidcpower.Session.lcr_open_short_load_compensation_data_source property to define where the short compensation data that is applied to LCR measurements comes from.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_compensation_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Short:Enabled

	C Attribute: NIDCPOWER_ATTR_LCR_SHORT_COMPENSATION_ENABLED

lcr_short_custom_cable_compensation_enabled

	
nidcpower.Session.lcr_short_custom_cable_compensation_enabled

	Defines how to apply short custom cable compensation in LCR mode when nidcpower.Session.cable_length property is set to CUSTOM_ONBOARD_STORAGE or CUSTOM_AS_CONFIGURED.

LCR custom cable compensation uses compensation data for both an open and short configuration.
For open custom cable compensation, you must supply your own data from a call to nidcpower.Session.perform_lcr_open_custom_cable_compensation().
For short custom cable compensation, you can supply your own data from a call to nidcpower.Session.perform_lcr_short_custom_cable_compensation() or NI-DCPower can apply a default set of short compensation data.

	False

	Uses default short compensation data.

	True

	Uses short custom cable compensation data generated by nidcpower.Session.perform_lcr_short_custom_cable_compensation().

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_custom_cable_compensation_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_custom_cable_compensation_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:LCR Short Custom Cable Compensation Enabled

	C Attribute: NIDCPOWER_ATTR_LCR_SHORT_CUSTOM_CABLE_COMPENSATION_ENABLED

lcr_short_reactance

	
nidcpower.Session.lcr_short_reactance

	Specifies the reactance, in ohms, of the circuit used for short LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_reactance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_reactance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Short:Reactance

	C Attribute: NIDCPOWER_ATTR_LCR_SHORT_REACTANCE

lcr_short_resistance

	
nidcpower.Session.lcr_short_resistance

	Specifies the resistance, in ohms, of the circuit used for short LCR compensation.
This property applies when nidcpower.Session.lcr_open_short_load_compensation_data_source is set to AS_DEFINED.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_short_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_short_resistance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Compensation:Short:Resistance

	C Attribute: NIDCPOWER_ATTR_LCR_SHORT_RESISTANCE

lcr_source_aperture_time

	
nidcpower.Session.lcr_source_aperture_time

	Specifies the LCR source aperture time for a channel, in seconds.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_source_aperture_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_source_aperture_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Advanced:Source Aperture Time

	C Attribute: NIDCPOWER_ATTR_LCR_SOURCE_APERTURE_TIME

lcr_source_delay_mode

	
nidcpower.Session.lcr_source_delay_mode

	For instruments in LCR mode, determines whether NI-DCPower automatically calculates and applies the source delay or applies a source delay you set manually.

You can return the source delay duration for either option by reading nidcpower.Session.source_delay.

When you use this property to manually set the source delay, it is possible to set source delays short enough to unbalance the bridge and affect measurement accuracy. LCR measurement methods report whether the bridge is unbalanced.

Default Value: AUTOMATIC

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_source_delay_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_source_delay_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRSourceDelayMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:Source Delay Mode

	C Attribute: NIDCPOWER_ATTR_LCR_SOURCE_DELAY_MODE

lcr_stimulus_function

	
nidcpower.Session.lcr_stimulus_function

	Specifies the type of test signal to apply to the DUT for LCR measurements.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_stimulus_function

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_stimulus_function

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.LCRStimulusFunction

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Function

	C Attribute: NIDCPOWER_ATTR_LCR_STIMULUS_FUNCTION

lcr_voltage_amplitude

	
nidcpower.Session.lcr_voltage_amplitude

	Specifies the amplitude, in volts RMS, of the AC voltage test signal applied to the DUT for LCR measurements.
This property applies when the nidcpower.Session.lcr_stimulus_function property is set to VOLTAGE.

Valid Values: 7.08e-4 V RMS to 7.07 V RMS

Instrument specifications affect the valid values you can program. Refer to the specifications for your instrument for more information.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_voltage_amplitude

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_voltage_amplitude

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Voltage Amplitude

	C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_AMPLITUDE

lcr_voltage_range

	
nidcpower.Session.lcr_voltage_range

	Specifies the voltage range, in volts RMS, for the specified channel(s).
The range defines the valid values to which you can set the nidcpower.Session.lcr_voltage_amplitude.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].lcr_voltage_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.lcr_voltage_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: LCR:AC Stimulus:Advanced:Voltage Range

	C Attribute: NIDCPOWER_ATTR_LCR_VOLTAGE_RANGE

logical_name

	
nidcpower.Session.logical_name

	Contains the logical name you specified when opening the current IVI session.
You can pass a logical name to the nidcpower.Session.__init__() method. The IVI Configuration utility must contain an entry for the logical name. The logical name entry refers to a method section in the IVI Configuration file. The method section specifies a physical device and initial user options.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Advanced Session Information:Logical Name

	C Attribute: NIDCPOWER_ATTR_LOGICAL_NAME

measure_buffer_size

	
nidcpower.Session.measure_buffer_size

	Specifies the number of samples that the active channel measurement buffer can hold.
The default value is the maximum number of samples that a device is capable of recording in one second.
Valid Values: The PXIe-4051, PXIe-4147, and PXIe-4151 support values from 170 to 18000110.
The PXIe-4162/4163 supports values from 256 to 1000192.
The PXIe-4190 supports values from 102 to 6000048.
The PXIe-4112, PXIe-4113, and PXIe-4154 support values from 1000 to 178956970.
All other supported instruments support values from 1000 to 268435455.
Default Value: Varies by device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help for more information about default values.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_buffer_size

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_buffer_size

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Measure Buffer Size

	C Attribute: NIDCPOWER_ATTR_MEASURE_BUFFER_SIZE

measure_complete_event_delay

	
nidcpower.Session.measure_complete_event_delay

	Specifies the amount of time to delay the generation of the Measure Complete event, in seconds.
Valid Values: The PXIe-4051 supports values from 0 seconds to 39 seconds.
The PXIe-4147 supports values from 0 seconds to 26.5 seconds.
The PXIe-4151 supports values from 0 seconds to 42 seconds.
The PXIe-4162/4163 and PXIe-4190 support values from 0 seconds to 23 seconds.
All other supported instruments support values from 0 to 167 seconds.
Default Value: Varies by device. Refer to Supported Properties by Device topic in the NI DC Power Supplies and SMUs Help for more information about default values.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_delay

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Event Delay

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_DELAY

measure_complete_event_output_behavior

	
nidcpower.Session.measure_complete_event_output_behavior

	Determines the event type’s behavior when a corresponding trigger is received. If you set the Measure Complete event output behavior to PULSE, a single pulse is transmitted. If you set the Measure Complete event output behavior to TOGGLE, the output level toggles between low and high. The default value is PULSE.

Note

This property is not supported by all output terminals.
This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_output_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventOutputBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Output Behavior

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_BEHAVIOR

measure_complete_event_output_terminal

	
nidcpower.Session.measure_complete_event_output_terminal

	Specifies the output terminal for exporting the Measure Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_OUTPUT_TERMINAL

measure_complete_event_pulse_polarity

	
nidcpower.Session.measure_complete_event_pulse_polarity

	Specifies the behavior of the Measure Complete event.
Default Value: HIGH

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_POLARITY

measure_complete_event_pulse_width

	
nidcpower.Session.measure_complete_event_pulse_width

	Specifies the width of the Measure Complete event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
Valid Values: 1.5e-7 to 1.6e-6
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_PULSE_WIDTH

measure_complete_event_toggle_initial_state

	
nidcpower.Session.measure_complete_event_toggle_initial_state

	Specifies the initial state of the Measure Complete event when you set the nidcpower.Session.measure_complete_event_output_behavior property to TOGGLE.
For a Single Point mode acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high when the event occurs during the acquisition. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit.
The output switches to low when the event occurs during the acquisition.
For a Sequence mode operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit. The output switches to high the first time an event occurs during the acquisition.
The second time an event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.
If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session commit.
The output switches to low on the first time the event occurs during the acquisition. The second time the event occurs, the output switches to high.
This pattern repeats for any subsequent event occurrences.
The default value is NIDCPOWER_VAL_LOW_STATE.

Note

This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventToggleInitialState

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Measure Complete Event:Toggle:Initial State

	C Attribute: NIDCPOWER_ATTR_MEASURE_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

measure_record_delta_time

	
nidcpower.Session.measure_record_delta_time

	Queries the amount of time, in seconds, between between the start of two consecutive measurements in a measure record. Only query this property after the desired measurement settings are committed.
two measurements and the rest would differ.

Note

This property is not available when Auto Zero is configured to Once because the amount of time between the first

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_delta_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read only

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Delta Time

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_DELTA_TIME

measure_record_length

	
nidcpower.Session.measure_record_length

	Specifies how many measurements compose a measure record. When this property is set to a value greater than 1, the nidcpower.Session.measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER.
Valid Values: 1 to 16,777,216
Default Value: 1

Note

This property is not available in a session involving multiple channels.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_length

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Length

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH

measure_record_length_is_finite

	
nidcpower.Session.measure_record_length_is_finite

	Specifies whether to take continuous measurements. Call the nidcpower.Session.abort() method to stop continuous measurements. When this property is set to False and the nidcpower.Session.source_mode property is set to SINGLE_POINT, the nidcpower.Session.measure_when property must be set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE or ON_MEASURE_TRIGGER. When this property is set to False and the nidcpower.Session.source_mode property is set to SEQUENCE, the nidcpower.Session.measure_when property must be set to ON_MEASURE_TRIGGER.
Default Value: True

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device. This property is not available in a session involving multiple channels.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_record_length_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_record_length_is_finite

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Measure Record Length Is Finite

	C Attribute: NIDCPOWER_ATTR_MEASURE_RECORD_LENGTH_IS_FINITE

measure_trigger_type

	
nidcpower.Session.measure_trigger_type

	Specifies the behavior of the Measure trigger.
Default Value: DIGITAL_EDGE

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Measure Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_MEASURE_TRIGGER_TYPE

measure_when

	
nidcpower.Session.measure_when

	Specifies when the measure unit should acquire measurements. Unless this property is configured to ON_MEASURE_TRIGGER, the nidcpower.Session.measure_trigger_type property is ignored.
Refer to the Acquiring Measurements topic in the NI DC Power Supplies and SMUs Help for more information about how to configure your measurements.
Default Value: If the nidcpower.Session.source_mode property is set to SINGLE_POINT, the default value is ON_DEMAND. This value supports only the nidcpower.Session.measure() method and nidcpower.Session.measure_multiple() method. If the nidcpower.Session.source_mode property is set to SEQUENCE, the default value is AUTOMATICALLY_AFTER_SOURCE_COMPLETE. This value supports only the nidcpower.Session.fetch_multiple() method.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].measure_when

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.measure_when

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.MeasureWhen

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Measure When

	C Attribute: NIDCPOWER_ATTR_MEASURE_WHEN

merged_channels

	
nidcpower.Session.merged_channels

	Specifies the channel(s) to merge with a designated primary channel of an instrument in order to increase the maximum current you can source from the instrument.
This property designates the merge channels to combine with a primary channel. To designate the primary channel, initialize the session to the primary channel only.
Note: You cannot change the merge configuration with this property when the session is in the Running state.
For complete information on using merged channels with this property, refer to Merged Channels in the NI DC Power Supplies and SMUs Help.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device. Devices that do not support this property behave as if no channels were merged.
Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].merged_channels

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.merged_channels

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Merged Channels

	C Attribute: NIDCPOWER_ATTR_MERGED_CHANNELS

output_capacitance

	
nidcpower.Session.output_capacitance

	Specifies whether to use a low or high capacitance on the output for the specified channel(s).
Refer to the NI PXI-4130 Output Capacitance Selection topic in the NI DC Power Supplies and SMUs Help for more information about capacitance.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_capacitance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_capacitance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OutputCapacitance

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Output Capacitance

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CAPACITANCE

output_connected

	
nidcpower.Session.output_connected

	Specifies whether the output relay is connected (closed) or disconnected (open). The nidcpower.Session.output_enabled property does not change based on this property; they are independent of each other.

Set this property to False to disconnect the output terminal from the output.

Default Value: True

Note

Only disconnect the output when disconnecting is necessary for your application. For example, a battery connected to the output terminal might discharge unless the relay is disconnected. Excessive connecting and disconnecting of the output can cause premature wear on electromechanical relays, such as those used by the PXIe-4147, PXI-4132, or PXIe-4138/39.

The PXIe-4051 does not have an output relay. For the PXIe-4051, this property specifies whether the input MOSFETs are connected (ON) or disconnected (OFF).

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_connected

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_connected

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Connected

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CONNECTED

output_cutoff_current_change_limit_high

	
nidcpower.Session.output_cutoff_current_change_limit_high

	Specifies a limit for positive current slew rate, in amps per microsecond, for output cutoff.
If the current increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with CURRENT_CHANGE_HIGH as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_change_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Current Change Limit High

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_HIGH

output_cutoff_current_change_limit_low

	
nidcpower.Session.output_cutoff_current_change_limit_low

	Specifies a limit for negative current slew rate, in amps per microsecond, for output cutoff.
If the current decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with CURRENT_CHANGE_LOW as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_change_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Current Change Limit Low

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_CHANGE_LIMIT_LOW

output_cutoff_current_measure_limit_high

	
nidcpower.Session.output_cutoff_current_measure_limit_high

	Specifies a high limit current value, in amps, for output cutoff.
If the measured current exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with CURRENT_MEASURE_HIGH as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_measure_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Current Measure Limit High

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_HIGH

output_cutoff_current_measure_limit_low

	
nidcpower.Session.output_cutoff_current_measure_limit_low

	Specifies a low limit current value, in amps, for output cutoff.
If the measured current falls below this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with CURRENT_MEASURE_LOW as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_measure_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_measure_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Current Measure Limit Low

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_MEASURE_LIMIT_LOW

output_cutoff_current_overrange_enabled

	
nidcpower.Session.output_cutoff_current_overrange_enabled

	Enables or disables current overrange functionality for output cutoff. If enabled, the output is disconnected when the measured current saturates the current range.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with CURRENT_SATURATED as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_current_overrange_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_current_overrange_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Current Overrange Enabled

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_CURRENT_OVERRANGE_ENABLED

output_cutoff_delay

	
nidcpower.Session.output_cutoff_delay

	Delays disconnecting the output by the time you specify, in seconds, when a limit is exceeded.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_delay

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Delay

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_DELAY

output_cutoff_enabled

	
nidcpower.Session.output_cutoff_enabled

	Enables or disables output cutoff functionality. If enabled, you can define output cutoffs that, if exceeded, cause the output of the specified channel(s) to be disconnected.
When this property is disabled, all other output cutoff properties are ignored.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

	This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.
	Instruments that do not support this property behave as if this property were set to False.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Enabled

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_ENABLED

output_cutoff_voltage_change_limit_high

	
nidcpower.Session.output_cutoff_voltage_change_limit_high

	Specifies a limit for positive voltage slew rate, in volts per microsecond, for output cutoff.
If the voltage increases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() with VOLTAGE_CHANGE_HIGH as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Change Limit High

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_HIGH

output_cutoff_voltage_change_limit_low

	
nidcpower.Session.output_cutoff_voltage_change_limit_low

	Specifies a limit for negative voltage slew rate, in volts per microsecond, for output cutoff.
If the voltage decreases at a rate that exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() with VOLTAGE_CHANGE_LOW as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_change_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_change_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Change Limit Low

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_CHANGE_LIMIT_LOW

output_cutoff_voltage_measure_limit_high

	
nidcpower.Session.output_cutoff_voltage_measure_limit_high

	Specifies a high limit voltage value, in volts, for output cutoff.
If the measured voltage exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with VOLTAGE_MEASURE_HIGH as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_measure_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_measure_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Measure Limit High

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_MEASURE_LIMIT_HIGH

output_cutoff_voltage_measure_limit_low

	
nidcpower.Session.output_cutoff_voltage_measure_limit_low

	Specifies a low limit voltage value, in volts, for output cutoff.
If the measured voltage falls below this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with VOLTAGE_MEASURE_LOW as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_measure_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_measure_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Measure Limit Low

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_MEASURE_LIMIT_LOW

output_cutoff_voltage_output_limit_high

	
nidcpower.Session.output_cutoff_voltage_output_limit_high

	Specifies a high limit voltage value, in volts, for output cutoff.
If the voltage output exceeds this limit, the output is disconnected.

To find out whether an output has exceeded this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_HIGH as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Output Limit High

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_HIGH

output_cutoff_voltage_output_limit_low

	
nidcpower.Session.output_cutoff_voltage_output_limit_low

	Specifies a low limit voltage value, in volts, for output cutoff.
If the voltage output falls below this limit, the output is disconnected.

To find out whether an output has fallen below this limit, call the nidcpower.Session.query_latched_output_cutoff_state() method with VOLTAGE_OUTPUT_LOW as the output cutoff reason.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_cutoff_voltage_output_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_cutoff_voltage_output_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Cutoff:Voltage Output Limit Low

	C Attribute: NIDCPOWER_ATTR_OUTPUT_CUTOFF_VOLTAGE_OUTPUT_LIMIT_LOW

output_enabled

	
nidcpower.Session.output_enabled

	Specifies whether the output is enabled (True) or disabled (False).
Depending on the value you specify for the nidcpower.Session.output_function property, you also must set the voltage level or current level in addition to enabling the output

Default Value: The default value is True if you use the nidcpower.Session.__init__() method to open the session. Otherwise the default value is False, including when you use a calibration session or the deprecated programming model.

Note

If the session is in the Committed or Uncommitted states, enabling the output does not take effect until you call the nidcpower.Session.initiate() method. Refer to the Programming States topic in the NI DC Power Supplies and SMUs Help for more information about NI-DCPower programming states.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Enabled

	C Attribute: NIDCPOWER_ATTR_OUTPUT_ENABLED

output_function

	
nidcpower.Session.output_function

	Configures the method to generate on the specified channel(s).
When DC_VOLTAGE is selected, the device generates the desired voltage level on the output as long as the output current is below the current limit. You can use the following properties to configure the channel when DC_VOLTAGE is selected:
nidcpower.Session.voltage_level
nidcpower.Session.current_limit
nidcpower.Session.current_limit_high
nidcpower.Session.current_limit_low
nidcpower.Session.voltage_level_range
nidcpower.Session.current_limit_range
nidcpower.Session.compliance_limit_symmetry
When DC_CURRENT is selected, the device generates the desired current level on the output as long as the output voltage is below the voltage limit. You can use the following properties to configure the channel when DC_CURRENT is selected:
nidcpower.Session.current_level
nidcpower.Session.voltage_limit
nidcpower.Session.voltage_limit_high
nidcpower.Session.voltage_limit_low
nidcpower.Session.current_level_range
nidcpower.Session.voltage_limit_range
nidcpower.Session.compliance_limit_symmetry

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_function

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_function

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.OutputFunction

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Function

	C Attribute: NIDCPOWER_ATTR_OUTPUT_FUNCTION

output_resistance

	
nidcpower.Session.output_resistance

	Specifies the output resistance that the device attempts to generate for the specified channel(s). This property is available only when you set the nidcpower.Session.output_function property on a support device. Refer to a supported device’s topic about output resistance for more information about selecting an output resistance.
about supported devices.
Default Value: 0.0

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].output_resistance

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.output_resistance

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Output Resistance

	C Attribute: NIDCPOWER_ATTR_OUTPUT_RESISTANCE

overranging_enabled

	
nidcpower.Session.overranging_enabled

	Specifies whether NI-DCPower allows setting the voltage level, current level, voltage limit and current limit outside the device specification limits. True means that overranging is enabled.
Refer to the Ranges topic in the NI DC Power Supplies and SMUs Help for more information about overranging.
Default Value: False

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].overranging_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.overranging_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Overranging Enabled

	C Attribute: NIDCPOWER_ATTR_OVERRANGING_ENABLED

ovp_enabled

	
nidcpower.Session.ovp_enabled

	Enables (True) or disables (False) overvoltage protection (OVP).
Refer to the Output Overvoltage Protection topic in the NI DC Power Supplies and SMUs Help for more information about overvoltage protection.
Default Value: False

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ovp_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:OVP Enabled

	C Attribute: NIDCPOWER_ATTR_OVP_ENABLED

ovp_limit

	
nidcpower.Session.ovp_limit

	Determines the voltage limit, in volts, beyond which overvoltage protection (OVP) engages.
The limit is specified as a positive value, but symmetric positive and negative limits are enforced simultaneously.
For example, setting the OVP Limit to 65 will configure the OVP feature to trigger an OVP error if the output exceeds ±65 V.

Valid Values: 2 V to 210 V
Default Value: 210 V

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ovp_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ovp_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:OVP Limit

	C Attribute: NIDCPOWER_ATTR_OVP_LIMIT

power_allocation_mode

	
nidcpower.Session.power_allocation_mode

	Determines whether the device sources the power its source configuration requires or a specific wattage you request; determines whether NI-DCPower proactively checks that this sourcing power is within the maximum per-channel and overall sourcing power of the device.

When this property configures NI-DCPower to perform a sourcing power check, a device is not permitted to source power in excess of its maximum per-channel or overall sourcing power. If the check determines a source configuration or power request would require the device to do so, NI-DCPower returns an error.

When this property does not configure NI-DCPower to perform a sourcing power check, a device can attempt to fulfill source configurations that would require it to source power in excess of its maximum per-channel or overall sourcing power and may shut down to prevent damage.

Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device. Devices that do not support this property behave as if this property were set to DISABLED.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].power_allocation_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_allocation_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerAllocationMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Power Allocation Mode

	C Attribute: NIDCPOWER_ATTR_POWER_ALLOCATION_MODE

power_line_frequency

	
nidcpower.Session.power_line_frequency

	Specifies the power line frequency for specified channel(s). NI-DCPower uses this value to select a timebase for setting the nidcpower.Session.aperture_time property in power line cycles (PLCs).
in the NI DC Power Supplies and SMUs Help for information about supported devices.
Default Value: NIDCPOWER_VAL_60_HERTZ

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].power_line_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.power_line_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Power Line Frequency

	C Attribute: NIDCPOWER_ATTR_POWER_LINE_FREQUENCY

power_source

	
nidcpower.Session.power_source

	Specifies the power source to use. NI-DCPower switches the power source used by the device to the specified value.
Default Value: AUTOMATIC
is set to AUTOMATIC. However, if the session is in the Committed or Uncommitted state when you set this property, the power source selection only occurs after you call the nidcpower.Session.initiate() method.

Note

Automatic selection is not persistent and occurs only at the time this property

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerSource

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Power Source

	C Attribute: NIDCPOWER_ATTR_POWER_SOURCE

power_source_in_use

	
nidcpower.Session.power_source_in_use

	Indicates whether the device is using the internal or auxiliary power source to generate power.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.PowerSourceInUse

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Power Source In Use

	C Attribute: NIDCPOWER_ATTR_POWER_SOURCE_IN_USE

pulse_bias_current_level

	
nidcpower.Session.pulse_bias_current_level

	Specifies the pulse bias current level, in amps, that the device attempts to generate on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_level_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Current Level

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LEVEL

pulse_bias_current_limit

	
nidcpower.Session.pulse_bias_current_limit

	Specifies the pulse bias current limit, in amps, that the output cannot exceed when generating the desired pulse bias voltage on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT

pulse_bias_current_limit_high

	
nidcpower.Session.pulse_bias_current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the off phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
You must also specify a nidcpower.Session.pulse_bias_current_limit_low to complete the
asymmetric range.
Valid Values: [1% of nidcpower.Session.pulse_current_limit_range, nidcpower.Session.pulse_current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_HIGH

pulse_bias_current_limit_low

	
nidcpower.Session.pulse_bias_current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the off phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
You must also specify a nidcpower.Session.pulse_bias_current_limit_high to complete the
asymmetric range.
Valid Values: [-nidcpower.Session.pulse_current_limit_range, -1% of nidcpower.Session.pulse_current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_current_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Current Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_CURRENT_LIMIT_LOW

pulse_bias_delay

	
nidcpower.Session.pulse_bias_delay

	Determines when, in seconds, the device generates the Pulse Complete event after generating the off level of a pulse.
Valid Values: 0 to 167 seconds
Default Value: 16.67 milliseconds

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_delay

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse Bias Delay

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_DELAY

pulse_bias_voltage_level

	
nidcpower.Session.pulse_bias_voltage_level

	Specifies the pulse bias voltage level, in volts, that the device attempts to generate on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_level_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Bias Voltage Level

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LEVEL

pulse_bias_voltage_limit

	
nidcpower.Session.pulse_bias_voltage_limit

	Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired current on the specified channel(s) during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_limit_range property.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT

pulse_bias_voltage_limit_high

	
nidcpower.Session.pulse_bias_voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_CURRENT.
You must also specify a nidcpower.Session.pulse_bias_voltage_limit_low to complete the
asymmetric range.
Valid Values: [1% of nidcpower.Session.pulse_voltage_limit_range, nidcpower.Session.pulse_voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_HIGH

pulse_bias_voltage_limit_low

	
nidcpower.Session.pulse_bias_voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the off phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_CURRENT.
You must also specify a nidcpower.Session.pulse_bias_voltage_limit_high to complete the
asymmetric range.
Valid Values: [-nidcpower.Session.pulse_voltage_limit_range, -1% of nidcpower.Session.pulse_voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_bias_voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_bias_voltage_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Bias Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_BIAS_VOLTAGE_LIMIT_LOW

pulse_complete_event_output_terminal

	
nidcpower.Session.pulse_complete_event_output_terminal

	Specifies the output terminal for exporting the Pulse Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.
Default Value:The default value for PXI Express devices is 250 ns.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_OUTPUT_TERMINAL

pulse_complete_event_pulse_polarity

	
nidcpower.Session.pulse_complete_event_pulse_polarity

	Specifies the behavior of the Pulse Complete event.
Default Value: HIGH

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_POLARITY

pulse_complete_event_pulse_width

	
nidcpower.Session.pulse_complete_event_pulse_width

	Specifies the width of the Pulse Complete event, in seconds.
The minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for PXI Express devices is 1.6 microseconds.
Default Value: The default value for PXI Express devices is 250 ns.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_complete_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Pulse Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_PULSE_COMPLETE_EVENT_PULSE_WIDTH

pulse_current_level

	
nidcpower.Session.pulse_current_level

	Specifies the pulse current level, in amps, that the device attempts to generate on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_level_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Current Level

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL

pulse_current_level_range

	
nidcpower.Session.pulse_current_level_range

	Specifies the pulse current level range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the pulse current level and pulse bias current level.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_level_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Current Level Range

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LEVEL_RANGE

pulse_current_limit

	
nidcpower.Session.pulse_current_limit

	Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired pulse voltage on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT

pulse_current_limit_high

	
nidcpower.Session.pulse_current_limit_high

	Specifies the maximum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the on phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
You must also specify a nidcpower.Session.pulse_current_limit_low to complete the asymmetric
range.
Valid Values: [1% of nidcpower.Session.pulse_current_limit_range, nidcpower.Session.pulse_current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_HIGH

pulse_current_limit_low

	
nidcpower.Session.pulse_current_limit_low

	Specifies the minimum current, in amps, that the output can produce when
generating the desired pulse voltage on the specified channel(s) during
the on phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
You must also specify a nidcpower.Session.pulse_current_limit_high to complete the
asymmetric range.
Valid Values: [-nidcpower.Session.pulse_current_limit_range, -1% of nidcpower.Session.pulse_current_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_LOW

pulse_current_limit_range

	
nidcpower.Session.pulse_current_limit_range

	Specifies the pulse current limit range, in amps, for the specified channel(s).
The range defines the valid values to which you can set the pulse current limit and pulse bias current limit.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_current_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_current_limit_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Current Limit Range

	C Attribute: NIDCPOWER_ATTR_PULSE_CURRENT_LIMIT_RANGE

pulse_off_time

	
nidcpower.Session.pulse_off_time

	Determines the length, in seconds, of the off phase of a pulse.
Valid Values: 10 microseconds to 167 seconds
Default Value: 34 milliseconds

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_off_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_off_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse Off Time

	C Attribute: NIDCPOWER_ATTR_PULSE_OFF_TIME

pulse_on_time

	
nidcpower.Session.pulse_on_time

	Determines the length, in seconds, of the on phase of a pulse.
Valid Values: 10 microseconds to 167 seconds
Default Value: 34 milliseconds

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_on_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_on_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Pulse On Time

	C Attribute: NIDCPOWER_ATTR_PULSE_ON_TIME

pulse_trigger_type

	
nidcpower.Session.pulse_trigger_type

	Specifies the behavior of the Pulse trigger.
Default Value: NONE

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Pulse Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_PULSE_TRIGGER_TYPE

pulse_voltage_level

	
nidcpower.Session.pulse_voltage_level

	Specifies the pulse current limit, in amps, that the output cannot exceed when generating the desired pulse voltage on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_current_limit_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL

pulse_voltage_level_range

	
nidcpower.Session.pulse_voltage_level_range

	Specifies the pulse voltage level range, in volts, for the specified channel(s).
The range defines the valid values at which you can set the pulse voltage level and pulse bias voltage level.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_VOLTAGE.
For valid ranges, refer to the specifications for your instrument.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_level_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Voltage:Pulse Voltage Level Range

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LEVEL_RANGE

pulse_voltage_limit

	
nidcpower.Session.pulse_voltage_limit

	Specifies the pulse voltage limit, in volts, that the output cannot exceed when generating the desired pulse current on the specified channel(s) during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.
Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.pulse_voltage_limit_range property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT

pulse_voltage_limit_high

	
nidcpower.Session.pulse_voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_CURRENT.
You must also specify a nidcpower.Session.pulse_voltage_limit_low to complete the asymmetric
range.
Valid Values: [1% of nidcpower.Session.pulse_voltage_limit_range, nidcpower.Session.pulse_voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_HIGH

pulse_voltage_limit_low

	
nidcpower.Session.pulse_voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired pulse current on the specified channel(s)
during the on phase of a pulse.
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to PULSE_CURRENT.
You must also specify a nidcpower.Session.pulse_voltage_limit_high to complete the
asymmetric range.
Valid Values: [-nidcpower.Session.pulse_voltage_limit_range, -1% of nidcpower.Session.pulse_voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True or if the nidcpower.Session.output_function property is set to a
pulsing method.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_LOW

pulse_voltage_limit_range

	
nidcpower.Session.pulse_voltage_limit_range

	Specifies the pulse voltage limit range, in volts, for the specified channel(s).
The range defines the valid values to which you can set the pulse voltage limit and pulse bias voltage limit.
This property is applicable only if the nidcpower.Session.output_function property is set to PULSE_CURRENT.
For valid ranges, refer to the specifications for your instrument.

Note

The channel must be enabled for the specified current limit to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].pulse_voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.pulse_voltage_limit_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Pulse Current:Pulse Voltage Limit Range

	C Attribute: NIDCPOWER_ATTR_PULSE_VOLTAGE_LIMIT_RANGE

query_instrument_status

	
nidcpower.Session.query_instrument_status

	Specifies whether NI-DCPower queries the device status after each operation.
Querying the device status is useful for debugging. After you validate your program, you can set this property to False to disable status checking and maximize performance.
NI-DCPower ignores status checking for particular properties regardless of the setting of this property.
Use the nidcpower.Session.__init__() method to override this value.
Default Value: True

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Query Instrument Status

	C Attribute: NIDCPOWER_ATTR_QUERY_INSTRUMENT_STATUS

ready_for_pulse_trigger_event_output_terminal

	
nidcpower.Session.ready_for_pulse_trigger_event_output_terminal

	Specifies the output terminal for exporting the Ready For Pulse Trigger event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_OUTPUT_TERMINAL

ready_for_pulse_trigger_event_pulse_polarity

	
nidcpower.Session.ready_for_pulse_trigger_event_pulse_polarity

	Specifies the behavior of the Ready For Pulse Trigger event.
Default Value: HIGH

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_POLARITY

ready_for_pulse_trigger_event_pulse_width

	
nidcpower.Session.ready_for_pulse_trigger_event_pulse_width

	Specifies the width of the Ready For Pulse Trigger event, in seconds.
The minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
Default Value: The default value for PXI Express devices is 250 ns

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].ready_for_pulse_trigger_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.ready_for_pulse_trigger_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Ready For Pulse Trigger Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_READY_FOR_PULSE_TRIGGER_EVENT_PULSE_WIDTH

requested_power_allocation

	
nidcpower.Session.requested_power_allocation

	
	Specifies the power, in watts, to request the device to source from each active channel.
	This property defines the power to source from the device only if the nidcpower.Session.power_allocation_mode property is set to MANUAL.

The power you request with this property may be incompatible with the power a given source configuration requires or the power the device can provide:
If the requested power is less than the power required for the source configuration, the device does not exceed the requested power, and NI-DCPower returns an error.
If the requested power is greater than the maximum per-channel or overall sourcing power, the device does not exceed the allowed power, and NI-DCPower returns an error.

	Valid Values: [0, device per-channel maximum power]
	Default Value: Refer to the Supported Properties by Device topic for the default value by device.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].requested_power_allocation

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.requested_power_allocation

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Requested Power Allocation

	C Attribute: NIDCPOWER_ATTR_REQUESTED_POWER_ALLOCATION

reset_average_before_measurement

	
nidcpower.Session.reset_average_before_measurement

	Specifies whether the measurement returned from any measurement call starts with a new measurement call (True) or returns a measurement that has already begun or completed(False).
When you set the nidcpower.Session.samples_to_average property in the Running state, the channel measurements might move out of synchronization. While NI-DCPower automatically synchronizes measurements upon the initialization of a session, you can force a synchronization in the running state before you run the nidcpower.Session.measure_multiple() method. To force a synchronization in the running state, set this property to True, and then run the nidcpower.Session.measure_multiple() method, specifying all channels in the channel name parameter. You can set the nidcpower.Session.reset_average_before_measurement property to False after the nidcpower.Session.measure_multiple() method completes.
Default Value: True

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].reset_average_before_measurement

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.reset_average_before_measurement

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Advanced:Reset Average Before Measurement

	C Attribute: NIDCPOWER_ATTR_RESET_AVERAGE_BEFORE_MEASUREMENT

samples_to_average

	
nidcpower.Session.samples_to_average

	Specifies the number of samples to average when you take a measurement.
Increasing the number of samples to average decreases measurement noise but increases the time required to take a measurement. Refer to the NI PXI-4110, NI PXI-4130, NI PXI-4132, or NI PXIe-4154 Averaging topic for optional property settings to improve immunity to certain noise types, or refer to the NI PXIe-4140/4141 DC Noise Rejection, NI PXIe-4142/4143 DC Noise Rejection, or NI PXIe-4144/4145 DC Noise Rejection topic for information about improving noise immunity for those devices.
Default Value:
NI PXI-4110 or NI PXI-4130—10
NI PXI-4132—1
NI PXIe-4112—1
NI PXIe-4113—1
NI PXIe-4140/4141—1
NI PXIe-4142/4143—1
NI PXIe-4144/4145—1
NI PXIe-4154—500

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].samples_to_average

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.samples_to_average

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Samples To Average

	C Attribute: NIDCPOWER_ATTR_SAMPLES_TO_AVERAGE

self_calibration_persistence

	
nidcpower.Session.self_calibration_persistence

	Specifies whether the values calculated during self-calibration should be written to hardware to be used until the next self-calibration or only used until the nidcpower.Session.reset_device() method is called or the machine is powered down.
This property affects the behavior of the nidcpower.Session.self_cal() method. When set to KEEP_IN_MEMORY, the values calculated by the nidcpower.Session.self_cal() method are used in the existing session, as well as in all further sessions until you call the nidcpower.Session.reset_device() method or restart the machine. When you set this property to WRITE_TO_EEPROM, the values calculated by the nidcpower.Session.self_cal() method are written to hardware and used in the existing session and in all subsequent sessions until another call to the nidcpower.Session.self_cal() method is made.
about supported devices.
Default Value: KEEP_IN_MEMORY

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].self_calibration_persistence

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.self_calibration_persistence

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SelfCalibrationPersistence

	Permissions

	read-write

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Advanced:Self-Calibration Persistence

	C Attribute: NIDCPOWER_ATTR_SELF_CALIBRATION_PERSISTENCE

sense

	
nidcpower.Session.sense

	Selects either local or remote sensing of the output voltage for the specified channel(s).
Refer to the Local and Remote Sense topic in the NI DC Power Supplies and SMUs Help for more information about sensing voltage on supported channels and about devices that support local and/or remote sensing.
Default Value: The default value is LOCAL if the device supports local sense. Otherwise, the default and only supported value is REMOTE.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sense

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sense

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Sense

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Measurement:Sense

	C Attribute: NIDCPOWER_ATTR_SENSE

sequence_advance_trigger_type

	
nidcpower.Session.sequence_advance_trigger_type

	Specifies the behavior of the Sequence Advance trigger.
Default Value: NONE

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_advance_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_advance_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Sequence Advance Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ADVANCE_TRIGGER_TYPE

sequence_engine_done_event_output_behavior

	
nidcpower.Session.sequence_engine_done_event_output_behavior

	Determines the event type’s behavior when a corresponding trigger is received. If you set the Sequence Engine Done event output behavior to PULSE, a single pulse is transmitted. If you set the Sequence Engine Done event output behavior to TOGGLE, the output level toggles between low and high. The default value is PULSE.

Note

This property is not supported by all output terminals.
This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_output_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventOutputBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Output Behavior

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_BEHAVIOR

sequence_engine_done_event_output_terminal

	
nidcpower.Session.sequence_engine_done_event_output_terminal

	Specifies the output terminal for exporting the Sequence Engine Done Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_OUTPUT_TERMINAL

sequence_engine_done_event_pulse_polarity

	
nidcpower.Session.sequence_engine_done_event_pulse_polarity

	Specifies the behavior of the Sequence Engine Done event.
Default Value: HIGH

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_POLARITY

sequence_engine_done_event_pulse_width

	
nidcpower.Session.sequence_engine_done_event_pulse_width

	Specifies the width of the Sequence Engine Done event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_PULSE_WIDTH

sequence_engine_done_event_toggle_initial_state

	
nidcpower.Session.sequence_engine_done_event_toggle_initial_state

	Specifies the initial state of the Sequence Engine Done event when you set the nidcpower.Session.sequence_engine_done_event_output_behavior property to TOGGLE.
For a Single Point mode acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high when the event occurs during the acquisition. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit.
The output switches to low when the event occurs during the acquisition.
For a Sequence mode operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit. The output switches to high the first time an event occurs during the acquisition.
The second time an event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.
If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session commit.
The output switches to low on the first time the event occurs during the acquisition. The second time the event occurs, the output switches to high.
This pattern repeats for any subsequent event occurrences.
The default value is NIDCPOWER_VAL_LOW_STATE.

Note

This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_engine_done_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_engine_done_event_toggle_initial_state

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventToggleInitialState

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Engine Done Event:Toggle:Initial State

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ENGINE_DONE_EVENT_TOGGLE_INITIAL_STATE

sequence_iteration_complete_event_output_behavior

	
nidcpower.Session.sequence_iteration_complete_event_output_behavior

	Determines the event type’s behavior when a corresponding trigger is received. If you set the Sequence Iteration Complete event output behavior to PULSE, a single pulse is transmitted. If you set the Sequence Iteration Complete event output behavior to TOGGLE, the output level toggles between low and high. The default value is PULSE.

Note

This property is not supported by all output terminals.
This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_output_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventOutputBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Output Behavior

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_BEHAVIOR

sequence_iteration_complete_event_output_terminal

	
nidcpower.Session.sequence_iteration_complete_event_output_terminal

	Specifies the output terminal for exporting the Sequence Iteration Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_OUTPUT_TERMINAL

sequence_iteration_complete_event_pulse_polarity

	
nidcpower.Session.sequence_iteration_complete_event_pulse_polarity

	Specifies the behavior of the Sequence Iteration Complete event.
Default Value: HIGH

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_POLARITY

sequence_iteration_complete_event_pulse_width

	
nidcpower.Session.sequence_iteration_complete_event_pulse_width

	Specifies the width of the Sequence Iteration Complete event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds.
the NI DC Power Supplies and SMUs Help for information about supported devices.
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_PULSE_WIDTH

sequence_iteration_complete_event_toggle_initial_state

	
nidcpower.Session.sequence_iteration_complete_event_toggle_initial_state

	Specifies the initial state of the Sequence Iteration Complete event when you set the nidcpower.Session.sequence_iteration_complete_event_output_behavior property to TOGGLE.
For a Single Point mode acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high when the event occurs during the acquisition. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit.
The output switches to low when the event occurs during the acquisition.
For a Sequence mode operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit. The output switches to high the first time an event occurs during the acquisition.
The second time an event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.
If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session commit.
The output switches to low on the first time the event occurs during the acquisition. The second time the event occurs, the output switches to high.
This pattern repeats for any subsequent event occurrences.
The default value is NIDCPOWER_VAL_LOW_STATE.

Note

This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_iteration_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_iteration_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventToggleInitialState

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Sequence Iteration Complete Event:Toggle:Initial State

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_ITERATION_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

sequence_loop_count

	
nidcpower.Session.sequence_loop_count

	Specifies the number of times a sequence is run after initiation.
Refer to the Sequence Source Mode topic in the NI DC Power Supplies and SMUs Help for more information about the sequence loop count.
When the nidcpower.Session.sequence_loop_count_is_finite property is set to False, the nidcpower.Session.sequence_loop_count property is ignored.
Valid Range: 1 to 2147483647
Default Value: 1

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_loop_count

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	int

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Sequence Loop Count

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT

sequence_loop_count_is_finite

	
nidcpower.Session.sequence_loop_count_is_finite

	Specifies whether a sequence should repeat indefinitely.
Refer to the Sequence Source Mode topic in the NI DC Power Supplies and SMUs Help for more information about infinite sequencing.
When the nidcpower.Session.sequence_loop_count_is_finite property is set to False, the nidcpower.Session.sequence_loop_count property is ignored.
Default Value: True

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_loop_count_is_finite

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_loop_count_is_finite

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Sequence Loop Count Is Finite

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_LOOP_COUNT_IS_FINITE

sequence_step_delta_time

	
nidcpower.Session.sequence_step_delta_time

	
Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_step_delta_time

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME

sequence_step_delta_time_enabled

	
nidcpower.Session.sequence_step_delta_time_enabled

	
Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].sequence_step_delta_time_enabled

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.sequence_step_delta_time_enabled

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	C Attribute: NIDCPOWER_ATTR_SEQUENCE_STEP_DELTA_TIME_ENABLED

serial_number

	
nidcpower.Session.serial_number

	Contains the serial number for the device you are currently using.

Tip

This property can be set/get on specific instruments within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container instruments to specify a subset.

Example: my_session.instruments[...].serial_number

To set/get on all instruments, you can call the property directly on the nidcpower.Session.

Example: my_session.serial_number

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	instruments

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Instrument Identification:Serial Number

	C Attribute: NIDCPOWER_ATTR_SERIAL_NUMBER

shutdown_trigger_type

	
nidcpower.Session.shutdown_trigger_type

	Specifies the behavior of the Shutdown trigger.
Default Value: NONE

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].shutdown_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.shutdown_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Shutdown Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_SHUTDOWN_TRIGGER_TYPE

simulate

	
nidcpower.Session.simulate

	Specifies whether to simulate NI-DCPower I/O operations. True specifies that operation is simulated.
Default Value: False

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:User Options:Simulate

	C Attribute: NIDCPOWER_ATTR_SIMULATE

source_complete_event_output_behavior

	
nidcpower.Session.source_complete_event_output_behavior

	Determines the event type’s behavior when a corresponding trigger is received. If you set the Source Complete event output behavior to PULSE, a single pulse is transmitted. If you set the Source Complete event output behavior to TOGGLE, the output level toggles between low and high. The default value is PULSE.

Note

This property is not supported by all output terminals.
This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_output_behavior

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_output_behavior

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventOutputBehavior

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Output Behavior

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_BEHAVIOR

source_complete_event_output_terminal

	
nidcpower.Session.source_complete_event_output_terminal

	Specifies the output terminal for exporting the Source Complete event.
Output terminals can be specified in one of two ways. If the device is named Dev1 and your terminal is PXI_Trig0, you can specify the terminal with the fully qualified terminal name, /Dev1/PXI_Trig0, or with the shortened terminal name, PXI_Trig0.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_output_terminal

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_output_terminal

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Output Terminal

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_OUTPUT_TERMINAL

source_complete_event_pulse_polarity

	
nidcpower.Session.source_complete_event_pulse_polarity

	Specifies the behavior of the Source Complete event.
Default Value: HIGH

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_pulse_polarity

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_polarity

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.Polarity

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Pulse:Polarity

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_POLARITY

source_complete_event_pulse_width

	
nidcpower.Session.source_complete_event_pulse_width

	Specifies the width of the Source Complete event, in seconds.
The minimum event pulse width value for PXI devices is 150 ns, and the minimum event pulse width value for PXI Express devices is 250 ns.
The maximum event pulse width value for all devices is 1.6 microseconds
Valid Values: 1.5e-7 to 1.6e-6 seconds
Default Value: The default value for PXI devices is 150 ns. The default value for PXI Express devices is 250 ns.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_pulse_width

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_pulse_width

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Pulse:Width

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_PULSE_WIDTH

source_complete_event_toggle_initial_state

	
nidcpower.Session.source_complete_event_toggle_initial_state

	Specifies the initial state of the Source Complete event when you set the nidcpower.Session.source_complete_event_output_behavior property to TOGGLE.
For a Single Point mode acquisition, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit.
The output switches to high when the event occurs during the acquisition. If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to a high state at session commit.
The output switches to low when the event occurs during the acquisition.
For a Sequence mode operation, if you set the initial state to NIDCPOWER_VAL_LOW_STATE, the output is set to low at session commit. The output switches to high the first time an event occurs during the acquisition.
The second time an event occurs, the output switches to low. This pattern repeats for any subsequent event occurrences.
If you set the initial state to NIDCPOWER_VAL_HIGH_STATE, the output is set to high at session commit.
The output switches to low on the first time the event occurs during the acquisition. The second time the event occurs, the output switches to high.
This pattern repeats for any subsequent event occurrences.
The default value is NIDCPOWER_VAL_LOW_STATE.

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices and terminals, search Supported Properties by Device on ni.com

Note

One or more of the referenced values are not in the Python API for this driver. Enums that only define values, or represent True/False, have been removed.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_complete_event_toggle_initial_state

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_complete_event_toggle_initial_state

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.EventToggleInitialState

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Events:Source Complete Event:Toggle:Initial State

	C Attribute: NIDCPOWER_ATTR_SOURCE_COMPLETE_EVENT_TOGGLE_INITIAL_STATE

source_delay

	
nidcpower.Session.source_delay

	Determines when, in seconds, the device generates the Source Complete event, potentially starting a measurement if the nidcpower.Session.measure_when property is set to AUTOMATICALLY_AFTER_SOURCE_COMPLETE.
Refer to the Single Point Source Mode and Sequence Source Mode topics for more information.
Valid Values: The PXIe-4051 supports values from 0 to 39 seconds.
The PXIe-4147 supports values from 0 to 26.5 seconds.
The PXIe-4151 supports values from 0 to 42 seconds.
The PXIe-4162/4163 and PXIe-4190 support values from 0 to 23 seconds.
All other supported instruments support values from 0 to 167 seconds.
Default Value: 0.01667 seconds

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_delay

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_delay

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	hightime.timedelta, datetime.timedelta, or float in seconds

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Advanced:Source Delay

	C Attribute: NIDCPOWER_ATTR_SOURCE_DELAY

source_mode

	
nidcpower.Session.source_mode

	Specifies whether to run a single output point or a sequence. Refer to the Single Point Source Mode and Sequence Source Mode topics in the NI DC Power Supplies and SMUs Help for more information about source modes.
Default value: SINGLE_POINT

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_mode

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_mode

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.SourceMode

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Source Mode

	C Attribute: NIDCPOWER_ATTR_SOURCE_MODE

source_trigger_type

	
nidcpower.Session.source_trigger_type

	Specifies the behavior of the Source trigger.
Default Value: NONE

Note

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].source_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.source_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Source Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_SOURCE_TRIGGER_TYPE

specific_driver_description

	
nidcpower.Session.specific_driver_description

	Contains a brief description of the specific driver.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Description

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_DESCRIPTION

specific_driver_prefix

	
nidcpower.Session.specific_driver_prefix

	Contains the prefix for NI-DCPower. The name of each user-callable method in NI-DCPower begins with this prefix.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Prefix

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_PREFIX

specific_driver_revision

	
nidcpower.Session.specific_driver_revision

	Contains additional version information about NI-DCPower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Revision

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_REVISION

specific_driver_vendor

	
nidcpower.Session.specific_driver_vendor

	Contains the name of the vendor that supplies NI-DCPower.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Identification:Driver Vendor

	C Attribute: NIDCPOWER_ATTR_SPECIFIC_DRIVER_VENDOR

start_trigger_type

	
nidcpower.Session.start_trigger_type

	Specifies the behavior of the Start trigger.
Default Value: NONE

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].start_trigger_type

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.start_trigger_type

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TriggerType

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Triggers:Start Trigger:Trigger Type

	C Attribute: NIDCPOWER_ATTR_START_TRIGGER_TYPE

supported_instrument_models

	
nidcpower.Session.supported_instrument_models

	Contains a comma-separated (,) list of supported NI-DCPower device models.

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	str

	Permissions

	read only

	Repeated Capabilities

	None

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Inherent IVI Attributes:Driver Capabilities:Supported Instrument Models

	C Attribute: NIDCPOWER_ATTR_SUPPORTED_INSTRUMENT_MODELS

transient_response

	
nidcpower.Session.transient_response

	Specifies the transient response. Refer to the Transient Response topic in the NI DC Power Supplies and SMUs Help for more information about transient response.
Default Value: NORMAL

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].transient_response

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.transient_response

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	enums.TransientResponse

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Transient Response

	C Attribute: NIDCPOWER_ATTR_TRANSIENT_RESPONSE

voltage_compensation_frequency

	
nidcpower.Session.voltage_compensation_frequency

	The frequency at which a pole-zero pair is added to the system when the channel is in Constant Voltage mode.
Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_compensation_frequency

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_compensation_frequency

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Compensation Frequency

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_COMPENSATION_FREQUENCY

voltage_gain_bandwidth

	
nidcpower.Session.voltage_gain_bandwidth

	The frequency at which the unloaded loop gain extrapolates to 0 dB in the absence of additional poles and zeroes. This property takes effect when the channel is in Constant Voltage mode.
Default Value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_gain_bandwidth

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_gain_bandwidth

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Gain Bandwidth

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_GAIN_BANDWIDTH

voltage_level

	
nidcpower.Session.voltage_level

	Specifies the voltage level, in volts, that the device attempts to generate on the specified channel(s).
This property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.

Valid Values: The valid values for this property are defined by the values you specify for the nidcpower.Session.voltage_level_range property.

Note

The channel must be enabled for the specified voltage level to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL

voltage_level_autorange

	
nidcpower.Session.voltage_level_autorange

	Specifies whether NI-DCPower automatically selects the voltage level range based on the desired voltage level for the specified channel(s).
If you set this property to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.voltage_level_range property. If you change the nidcpower.Session.voltage_level_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_level_range property was set to (or the default value if the property was never set) and uses that value as the voltage level range.
Query the nidcpower.Session.voltage_level_range property by using the nidcpower.Session._get_attribute_vi_int32() method for information about which range NI-DCPower automatically selects.
The nidcpower.Session.voltage_level_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.
Default Value: OFF

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_autorange

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level Autorange

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_AUTORANGE

voltage_level_range

	
nidcpower.Session.voltage_level_range

	Specifies the voltage level range, in volts, for the specified channel(s).
The range defines the valid values to which the voltage level can be set. Use the nidcpower.Session.voltage_level_autorange property to enable automatic selection of the voltage level range.
The nidcpower.Session.voltage_level_range property is applicable only if the nidcpower.Session.output_function property is set to DC_VOLTAGE.

For valid ranges, refer to the specifications for your instrument.

Note

The channel must be enabled for the specified voltage level range to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_level_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_level_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Voltage:Voltage Level Range

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LEVEL_RANGE

voltage_limit

	
nidcpower.Session.voltage_limit

	Specifies the voltage limit, in volts, that the output cannot exceed when generating the desired current level on the specified channels.
This property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT and the nidcpower.Session.compliance_limit_symmetry property is set to SYMMETRIC.

Valid Values: The valid values for this property are defined by the values to which the nidcpower.Session.voltage_limit_range property is set.

Note

The channel must be enabled for the specified current level to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT

voltage_limit_autorange

	
nidcpower.Session.voltage_limit_autorange

	Specifies whether NI-DCPower automatically selects the voltage limit range based on the desired voltage limit for the specified channel(s).
If this property is set to ON, NI-DCPower ignores any changes you make to the nidcpower.Session.voltage_limit_range property. If you change the nidcpower.Session.voltage_limit_autorange property from ON to OFF, NI-DCPower retains the last value the nidcpower.Session.voltage_limit_range property was set to (or the default value if the property was never set) and uses that value as the voltage limit range.
Query the nidcpower.Session.voltage_limit_range property by using the nidcpower.Session._get_attribute_vi_int32() method to find out which range NI-DCPower automatically selects.
The nidcpower.Session.voltage_limit_autorange property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.
Default Value: OFF

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_autorange

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_autorange

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	bool

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Autorange

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_AUTORANGE

voltage_limit_high

	
nidcpower.Session.voltage_limit_high

	Specifies the maximum voltage, in volts, that the output can produce
when generating the desired current on the specified channel(s).
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to DC_CURRENT.
You must also specify a nidcpower.Session.voltage_limit_low to complete the asymmetric
range.
Valid Values: [1% of nidcpower.Session.voltage_limit_range, nidcpower.Session.voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_high

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_high

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit High

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_HIGH

voltage_limit_low

	
nidcpower.Session.voltage_limit_low

	Specifies the minimum voltage, in volts, that the output can produce
when generating the desired current on the specified channel(s).
This property is applicable only if the nidcpower.Session.compliance_limit_symmetry property is set to
ASYMMETRIC and the nidcpower.Session.output_function property is set to DC_CURRENT.
You must also specify a nidcpower.Session.voltage_limit_high to complete the asymmetric
range.
Valid Values: [-nidcpower.Session.voltage_limit_range, -1% of nidcpower.Session.voltage_limit_range]
The range bounded by the limit high and limit low must include zero.
Default Value: Search ni.com for Supported Properties by Device for the default value by device.
Related Topics:
Ranges;
Changing Ranges;
Overranging

Note

The limit may be extended beyond the selected limit range if the
nidcpower.Session.overranging_enabled property is
set to True.

NI-DCPower uses the terms “source” and “output”. However, while sinking with electronic loads and SMUs these correspond to “sinking” and “input”, respectively.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_low

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_low

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Low

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_LOW

voltage_limit_range

	
nidcpower.Session.voltage_limit_range

	Specifies the voltage limit range, in volts, for the specified channel(s).
The range defines the valid values to which the voltage limit can be set. Use the nidcpower.Session.voltage_limit_autorange property to enable automatic selection of the voltage limit range.
The nidcpower.Session.voltage_limit_range property is applicable only if the nidcpower.Session.output_function property is set to DC_CURRENT.

For valid ranges, refer to the specifications for your instrument.

Note

The channel must be enabled for the specified voltage limit range to take effect. Refer to the nidcpower.Session.output_enabled property for more information about enabling the channel.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_limit_range

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_limit_range

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:DC Current:Voltage Limit Range

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_LIMIT_RANGE

voltage_pole_zero_ratio

	
nidcpower.Session.voltage_pole_zero_ratio

	The ratio of the pole frequency to the zero frequency when the channel is in Constant Voltage mode.
Default value: Determined by the value of the NORMAL setting of the nidcpower.Session.transient_response property.

Note

This property is not supported on all devices. For more information about supported devices, search ni.com for Supported Properties by Device.

Tip

This property can be set/get on specific channels within your nidcpower.Session instance.
Use Python index notation on the repeated capabilities container channels to specify a subset.

Example: my_session.channels[...].voltage_pole_zero_ratio

To set/get on all channels, you can call the property directly on the nidcpower.Session.

Example: my_session.voltage_pole_zero_ratio

The following table lists the characteristics of this property.

	Characteristic

	Value

	Datatype

	float

	Permissions

	read-write

	Repeated Capabilities

	channels

Tip

This property corresponds to the following LabVIEW Property or C Attribute:

	LabVIEW Property: Source:Custom Transient Response:Voltage:Pole-Zero Ratio

	C Attribute: NIDCPOWER_ATTR_VOLTAGE_POLE_ZERO_RATIO

Session

	Session

	Methods

	abort

	clear_latched_output_cutoff_state

	close

	commit

	configure_aperture_time

	configure_lcr_compensation

	configure_lcr_custom_cable_compensation

	create_advanced_sequence

	create_advanced_sequence_commit_step

	create_advanced_sequence_step

	delete_advanced_sequence

	disable

	export_attribute_configuration_buffer

	export_attribute_configuration_file

	fetch_multiple

	fetch_multiple_lcr

	get_channel_name

	get_channel_names

	get_ext_cal_last_date_and_time

	get_ext_cal_last_temp

	get_ext_cal_recommended_interval

	get_lcr_compensation_data

	get_lcr_compensation_last_date_and_time

	get_lcr_custom_cable_compensation_data

	get_self_cal_last_date_and_time

	get_self_cal_last_temp

	import_attribute_configuration_buffer

	import_attribute_configuration_file

	initiate

	lock

	measure

	measure_multiple

	measure_multiple_lcr

	perform_lcr_load_compensation

	perform_lcr_open_compensation

	perform_lcr_open_custom_cable_compensation

	perform_lcr_short_compensation

	perform_lcr_short_custom_cable_compensation

	query_in_compliance

	query_latched_output_cutoff_state

	query_max_current_limit

	query_max_voltage_level

	query_min_current_limit

	query_output_state

	read_current_temperature

	reset

	reset_device

	reset_with_defaults

	self_cal

	self_test

	send_software_edge_trigger

	set_sequence

	unlock

	wait_for_event

	Properties

	active_advanced_sequence

	active_advanced_sequence_step

	actual_power_allocation

	aperture_time

	aperture_time_auto_mode

	aperture_time_units

	autorange

	autorange_aperture_time_mode

	autorange_behavior

	autorange_maximum_delay_after_range_change

	autorange_minimum_aperture_time

	autorange_minimum_aperture_time_units

	autorange_minimum_current_range

	autorange_minimum_voltage_range

	autorange_threshold_mode

	auto_zero

	auxiliary_power_source_available

	cable_length

	channel_count

	compliance_limit_symmetry

	conduction_voltage_mode

	conduction_voltage_off_threshold

	conduction_voltage_on_threshold

	current_compensation_frequency

	current_gain_bandwidth

	current_level

	current_level_autorange

	current_level_falling_slew_rate

	current_level_range

	current_level_rising_slew_rate

	current_limit

	current_limit_autorange

	current_limit_behavior

	current_limit_high

	current_limit_low

	current_limit_range

	current_pole_zero_ratio

	dc_noise_rejection

	digital_edge_measure_trigger_input_terminal

	digital_edge_pulse_trigger_input_terminal

	digital_edge_sequence_advance_trigger_input_terminal

	digital_edge_shutdown_trigger_input_terminal

	digital_edge_source_trigger_input_terminal

	digital_edge_start_trigger_input_terminal

	driver_setup

	exported_measure_trigger_output_terminal

	exported_pulse_trigger_output_terminal

	exported_sequence_advance_trigger_output_terminal

	exported_source_trigger_output_terminal

	exported_start_trigger_output_terminal

	fetch_backlog

	instrument_firmware_revision

	instrument_manufacturer

	instrument_mode

	instrument_model

	interlock_input_open

	io_resource_descriptor

	isolation_state

	lcr_actual_load_reactance

	lcr_actual_load_resistance

	lcr_ac_dither_enabled

	lcr_ac_electrical_cable_length_delay

	lcr_automatic_level_control

	lcr_current_amplitude

	lcr_current_range

	lcr_custom_measurement_time

	lcr_dc_bias_automatic_level_control

	lcr_dc_bias_current_level

	lcr_dc_bias_current_range

	lcr_dc_bias_source

	lcr_dc_bias_transient_response

	lcr_dc_bias_voltage_level

	lcr_dc_bias_voltage_range

	lcr_frequency

	lcr_impedance_auto_range

	lcr_impedance_range

	lcr_impedance_range_source

	lcr_load_capacitance

	lcr_load_compensation_enabled

	lcr_load_inductance

	lcr_load_resistance

	lcr_measured_load_reactance

	lcr_measured_load_resistance

	lcr_measurement_time

	lcr_open_compensation_enabled

	lcr_open_conductance

	lcr_open_short_load_compensation_data_source

	lcr_open_susceptance

	lcr_short_compensation_enabled

	lcr_short_custom_cable_compensation_enabled

	lcr_short_reactance

	lcr_short_resistance

	lcr_source_aperture_time

	lcr_source_delay_mode

	lcr_stimulus_function

	lcr_voltage_amplitude

	lcr_voltage_range

	logical_name

	measure_buffer_size

	measure_complete_event_delay

	measure_complete_event_output_behavior

	measure_complete_event_output_terminal

	measure_complete_event_pulse_polarity

	measure_complete_event_pulse_width

	measure_complete_event_toggle_initial_state

	measure_record_delta_time

	measure_record_length

	measure_record_length_is_finite

	measure_trigger_type

	measure_when

	merged_channels

	output_capacitance

	output_connected

	output_cutoff_current_change_limit_high

	output_cutoff_current_change_limit_low

	output_cutoff_current_measure_limit_high

	output_cutoff_current_measure_limit_low

	output_cutoff_current_overrange_enabled

	output_cutoff_delay

	output_cutoff_enabled

	output_cutoff_voltage_change_limit_high

	output_cutoff_voltage_change_limit_low

	output_cutoff_voltage_measure_limit_high

	output_cutoff_voltage_measure_limit_low

	output_cutoff_voltage_output_limit_high

	output_cutoff_voltage_output_limit_low

	output_enabled

	output_function

	output_resistance

	overranging_enabled

	ovp_enabled

	ovp_limit

	power_allocation_mode

	power_line_frequency

	power_source

	power_source_in_use

	pulse_bias_current_level

	pulse_bias_current_limit

	pulse_bias_current_limit_high

	pulse_bias_current_limit_low

	pulse_bias_delay

	pulse_bias_voltage_level

	pulse_bias_voltage_limit

	pulse_bias_voltage_limit_high

	pulse_bias_voltage_limit_low

	pulse_complete_event_output_terminal

	pulse_complete_event_pulse_polarity

	pulse_complete_event_pulse_width

	pulse_current_level

	pulse_current_level_range

	pulse_current_limit

	pulse_current_limit_high

	pulse_current_limit_low

	pulse_current_limit_range

	pulse_off_time

	pulse_on_time

	pulse_trigger_type

	pulse_voltage_level

	pulse_voltage_level_range

	pulse_voltage_limit

	pulse_voltage_limit_high

	pulse_voltage_limit_low

	pulse_voltage_limit_range

	query_instrument_status

	ready_for_pulse_trigger_event_output_terminal

	ready_for_pulse_trigger_event_pulse_polarity

	ready_for_pulse_trigger_event_pulse_width

	requested_power_allocation

	reset_average_before_measurement

	samples_to_average

	self_calibration_persistence

	sense

	sequence_advance_trigger_type

	sequence_engine_done_event_output_behavior

	sequence_engine_done_event_output_terminal

	sequence_engine_done_event_pulse_polarity

	sequence_engine_done_event_pulse_width

	sequence_engine_done_event_toggle_initial_state

	sequence_iteration_complete_event_output_behavior

	sequence_iteration_complete_event_output_terminal

	sequence_iteration_complete_event_pulse_polarity

	sequence_iteration_complete_event_pulse_width

	sequence_iteration_complete_event_toggle_initial_state

	sequence_loop_count

	sequence_loop_count_is_finite

	sequence_step_delta_time

	sequence_step_delta_time_enabled

	serial_number

	shutdown_trigger_type

	simulate

	source_complete_event_output_behavior

	source_complete_event_output_terminal

	source_complete_event_pulse_polarity

	source_complete_event_pulse_width

	source_complete_event_toggle_initial_state

	source_delay

	source_mode

	source_trigger_type

	specific_driver_description

	specific_driver_prefix

	specific_driver_revision

	specific_driver_vendor

	start_trigger_type

	supported_instrument_models

	transient_response

	voltage_compensation_frequency

	voltage_gain_bandwidth

	voltage_level

	voltage_level_autorange

	voltage_level_range

	voltage_limit

	voltage_limit_autorange

	voltage_limit_high

	voltage_limit_low

	voltage_limit_range

	voltage_pole_zero_ratio

Repeated Capabilities

Repeated capabilities attributes are used to set the channel_string parameter to the
underlying driver function call. This can be the actual function based on the Session
method being called, or it can be the appropriate Get/Set Attribute function, such as niDCPower_SetAttributeViInt32().

Repeated capabilities attributes use the indexing operator [] to indicate the repeated capabilities.
The parameter can be a string, list, tuple, or slice (range). Each element of those can be a string or
an integer. If it is a string, you can indicate a range using the same format as the driver: '0-2' or
'0:2'

Some repeated capabilities use a prefix before the number and this is optional

channels

	
nidcpower.Session.channels

	session.channels['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

instruments

	
nidcpower.Session.instruments

	session.instruments['0-2'].channel_enabled = True

passes a string of '0, 1, 2' to the set attribute function.

Enums

Enums used in NI-DCPower

ApertureTimeAutoMode

	
class nidcpower.ApertureTimeAutoMode

	
	
OFF

	Disables automatic aperture time scaling. The nidcpower.Session.aperture_time property specifies the aperture time for all ranges.

	
SHORT

	Prioritizes measurement speed over measurement accuracy by quickly scaling down aperture time in larger current ranges. The nidcpower.Session.aperture_time property specifies the aperture time for the minimum range.

	
NORMAL

	Balances measurement accuracy and speed by scaling down aperture time in larger current ranges. The nidcpower.Session.aperture_time property specifies the aperture time for the minimum range.

	
LONG

	Prioritizes accuracy while still decreasing measurement time by slowly scaling down aperture time in larger current ranges. The nidcpower.Session.aperture_time property specifies the aperture time for the minimum range.

ApertureTimeUnits

	
class nidcpower.ApertureTimeUnits

	
	
SECONDS

	Specifies aperture time in seconds.

	
POWER_LINE_CYCLES

	Specifies aperture time in power line cycles (PLCs).

AutoZero

	
class nidcpower.AutoZero

	
	
OFF

	Disables auto zero.

	
ONCE

	Makes zero conversions following the first measurement after initiating the device. The device uses these zero conversions for the preceding measurement and future measurements until the device is reinitiated.

	
ON

	Makes zero conversions for every measurement.

AutorangeApertureTimeMode

	
class nidcpower.AutorangeApertureTimeMode

	
	
AUTO

	NI-DCPower optimizes the aperture time for the autorange algorithm based on the module range.

	
CUSTOM

	The user specifies a minimum aperture time for the algorithm using the nidcpower.Session.autorange_minimum_aperture_time property and the corresponding nidcpower.Session.autorange_minimum_aperture_time_units property.

AutorangeBehavior

	
class nidcpower.AutorangeBehavior

	
	
UP_TO_LIMIT_THEN_DOWN

	Go to limit range then range down as needed until measured value is within thresholds.

	
UP

	go up one range when the upper threshold is reached.

	
UP_AND_DOWN

	go up or down one range when the upper/lower threshold is reached.

AutorangeThresholdMode

	
class nidcpower.AutorangeThresholdMode

	
	
NORMAL

	Thresholds are selected based on a balance between accuracy and hysteresis.

	
FAST_STEP

	Optimized for faster changes in the measured signal. Thresholds are configured to be a smaller percentage of the range.

	
HIGH_HYSTERESIS

	Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are configured to be a larger percentage of the range.

	
MEDIUM_HYSTERESIS

	Optimized for noisy signals to minimize frequent and unpredictable range changes. Thresholds are configured to be a medium percentage of the range.

	
HOLD

	Attempt to maintain the active range. Thresholds will favor the active range.

CableLength

	
class nidcpower.CableLength

	
	
ZERO_M

	Uses predefined cable compensation data for a 0m cable (direct connection).

	
NI_STANDARD_0_5M

	Uses predefined cable compensation data for an NI standard 0.5m coaxial cable.

	
NI_STANDARD_1M

	Uses predefined cable compensation data for an NI standard 1m coaxial cable.

	
NI_STANDARD_2M

	Uses predefined cable compensation data for an NI standard 2m coaxial cable.

	
NI_STANDARD_4M

	Uses predefined cable compensation data for an NI standard 4m coaxial cable.

	
NI_STANDARD_TRIAXIAL_1M

	Uses predefined cable compensation data for an NI standard 1m triaxial cable.

	
NI_STANDARD_TRIAXIAL_2M

	Uses predefined cable compensation data for an NI standard 2m triaxial cable.

	
NI_STANDARD_TRIAXIAL_4M

	Uses predefined cable compensation data for an NI standard 4m triaxial cable.

	
CUSTOM_ONBOARD_STORAGE

	Uses previously generated custom cable compensation data from onboard storage. Only the most recently performed compensation data for each custom cable compensation type (open, short) is stored.

	
CUSTOM_AS_CONFIGURED

	Uses the custom cable compensation data supplied to nidcpower.Session.configure_lcr_custom_cable_compensation(). Use this option to manage multiple sets of custom cable compensation data.

ComplianceLimitSymmetry

	
class nidcpower.ComplianceLimitSymmetry

	
	
SYMMETRIC

	Compliance limits are specified symmetrically about 0.

	
ASYMMETRIC

	Compliance limits can be specified asymmetrically with respect to 0.

ConductionVoltageMode

	
class nidcpower.ConductionVoltageMode

	
	
AUTOMATIC

	The conduction voltage feature is only enabled when you set the nidcpower.Session.output_function property to DC_CURRENT.

	
ENABLED

	The conduction voltage feature is enabled.

	
DISABLED

	The conduction voltage feature is disabled.

CurrentLimitBehavior

	
class nidcpower.CurrentLimitBehavior

	
	
REGULATE

	The channel acts to restrict the output current to the value of the Current Limit property when the actual output on the channel reaches or exceeds that value.

	
TRIP

	The channel disables the output when the actual output current on the channel reaches or exceeds the value of the Current Limit property.

DCNoiseRejection

	
class nidcpower.DCNoiseRejection

	
	
SECOND_ORDER

	Second-order rejection of DC noise.

	
NORMAL

	Normal rejection of DC noise.

Event

	
class nidcpower.Event

	
	
SOURCE_COMPLETE

	Specifies the Source Complete event.

	
MEASURE_COMPLETE

	Specifies the Measure Complete event.

	
SEQUENCE_ITERATION_COMPLETE

	Specifies the Sequence Iteration Complete event.

	
SEQUENCE_ENGINE_DONE

	Specifies the Sequence Engine Done event.

	
PULSE_COMPLETE

	Specifies the Pulse Complete event.

	
READY_FOR_PULSE_TRIGGER

	Specifies the Ready for Pulse Trigger event.

EventOutputBehavior

	
class nidcpower.EventOutputBehavior

	
	
PULSE

	Output generates a pulse when the event is triggered.

	
TOGGLE

	Output toggles state when the event is triggered.

EventToggleInitialState

	
class nidcpower.EventToggleInitialState

	
	
LOW

	The initial state is low.

	
HIGH

	The initial state is high.

InstrumentMode

	
class nidcpower.InstrumentMode

	
	
SMU_PS

	The channel operates as an SMU/power supply.

	
LCR

	The channel operates as an LCR meter.

	
E_LOAD

	The channel operates as an electronic load (E-Load).

LCRCompensationType

	
class nidcpower.LCRCompensationType

	
	
OPEN

	Open LCR compensation.

	
SHORT

	Short LCR compensation.

	
LOAD

	Load LCR compensation.

	
OPEN_CUSTOM_CABLE

	Open custom cable compensation.

	
SHORT_CUSTOM_CABLE

	Short custom cable compensation.

LCRDCBiasSource

	
class nidcpower.LCRDCBiasSource

	
	
OFF

	Disables DC bias in LCR mode.

	
VOLTAGE

	Applies a constant voltage bias, as defined by the nidcpower.Session.lcr_dc_bias_voltage_level property.

	
CURRENT

	Applies a constant current bias, as defined by the nidcpower.Session.lcr_dc_bias_current_level property.

LCRDCBiasTransientResponse

	
class nidcpower.LCRDCBiasTransientResponse

	
	
NORMAL

	NI-DCPower automatically applies transient response values for DC bias.

	
CUSTOM

	NI-DCPower applies the transient response that you set manually with nidcpower.Session.transient_response for DC bias. Search ni.com for information on configuring transient response.

LCRImpedanceRangeSource

	
class nidcpower.LCRImpedanceRangeSource

	
	
IMPEDANCE_RANGE

	Uses the impedance range you specify with the nidcpower.Session.lcr_impedance_range property.

	
LOAD_CONFIGURATION

	Computes the impedance range to select based on the values you supply to the nidcpower.Session.lcr_load_resistance, nidcpower.Session.lcr_load_inductance, and nidcpower.Session.lcr_load_capacitance properties. NI-DCPower uses a series model of load resistance, load inductance, and load capacitance to compute the impedance range.

LCRMeasurementTime

	
class nidcpower.LCRMeasurementTime

	
	
SHORT

	Uses a short aperture time for LCR measurements.

	
MEDIUM

	Uses a medium aperture time for LCR measurements.

	
LONG

	Uses a long aperture time for LCR measurements.

	
CUSTOM

	Uses a custom aperture time for LCR measurements as specified by the nidcpower.Session.lcr_custom_measurement_time property.

LCROpenShortLoadCompensationDataSource

	
class nidcpower.LCROpenShortLoadCompensationDataSource

	
	
ONBOARD_STORAGE

	Uses previously generated LCR compensation data. Only the most recently performed compensation data for each LCR compensation type (open, short, and load) is stored.

	
AS_DEFINED

	Uses the LCR compensation data represented by the relevant LCR compensation properties as generated by nidcpower.Session.perform_lcr_open_compensation(), nidcpower.Session.perform_lcr_short_compensation(), and nidcpower.Session.perform_lcr_load_compensation(). Use this option to manage multiple sets of LCR compensation data. This option applies compensation data from the following properties: nidcpower.Session.lcr_open_conductance, nidcpower.Session.lcr_open_susceptance, nidcpower.Session.lcr_short_resistance, nidcpower.Session.lcr_short_reactance, nidcpower.Session.lcr_measured_load_resistance, nidcpower.Session.lcr_measured_load_reactance, nidcpower.Session.lcr_actual_load_resistance, nidcpower.Session.lcr_actual_load_reactance.

	
AS_CONFIGURED

	Uses the LCR compensation data supplied to nidcpower.Session.configure_lcr_compensation(). Use this option to manage multiple sets of LCR compensation data.

LCRReferenceValueType

	
class nidcpower.LCRReferenceValueType

	
	
IMPEDANCE

	The actual impedance, comprising real resistance and imaginary reactance, of your DUT. Supply resistance, in ohms, to reference value A; supply reactance, in ohms, to reference value B.

	
IDEAL_CAPACITANCE

	The ideal capacitance of your DUT. Supply capacitance, in farads, to reference value A.

	
IDEAL_INDUCTANCE

	The ideal inductance of your DUT. Supply inductance, in henrys, to reference value A.

	
IDEAL_RESISTANCE

	The ideal resistance of your DUT. Supply resistance, in ohms, to reference value A.

LCRSourceDelayMode

	
class nidcpower.LCRSourceDelayMode

	
	
AUTOMATIC

	NI-DCPower automatically applies source delay of sufficient duration to account for settling time.

	
MANUAL

	NI-DCPower applies the source delay that you set manually with nidcpower.Session.source_delay. You can use this option to set a shorter delay to reduce measurement time at the possible expense of measurement accuracy.

LCRStimulusFunction

	
class nidcpower.LCRStimulusFunction

	
	
VOLTAGE

	Applies an AC voltage for LCR stimulus.

	
CURRENT

	Applies an AC current for LCR stimulus.

MeasureWhen

	
class nidcpower.MeasureWhen

	
	
AUTOMATICALLY_AFTER_SOURCE_COMPLETE

	Acquires a measurement after each Source Complete event completes.

	
ON_DEMAND

	Acquires a measurement when the nidcpower.Session.measure() method or nidcpower.Session.measure_multiple() method is called.

	
ON_MEASURE_TRIGGER

	Acquires a measurement when a Measure trigger is received.

MeasurementTypes

	
class nidcpower.MeasurementTypes

	
	
CURRENT

	The device measures current.

	
VOLTAGE

	The device measures voltage.

OutputCapacitance

	
class nidcpower.OutputCapacitance

	
	
LOW

	Output Capacitance is low.

	
HIGH

	Output Capacitance is high.

OutputCutoffReason

	
class nidcpower.OutputCutoffReason

	
	
ALL

	Queries any output cutoff condition; clears all output cutoff conditions.

	
VOLTAGE_OUTPUT_HIGH

	Queries or clears cutoff conditions when the output exceeded the high cutoff limit for voltage output.

	
VOLTAGE_OUTPUT_LOW

	Queries or clears cutoff conditions when the output fell below the low cutoff limit for voltage output.

	
CURRENT_MEASURE_HIGH

	Queries or clears cutoff conditions when the measured current exceeded the high cutoff limit for current output.

	
CURRENT_MEASURE_LOW

	Queries or clears cutoff conditions when the measured current fell below the low cutoff limit for current output.

	
VOLTAGE_CHANGE_HIGH

	Queries or clears cutoff conditions when the voltage slew rate increased beyond the positive change cutoff for voltage output.

	
VOLTAGE_CHANGE_LOW

	Queries or clears cutoff conditions when the voltage slew rate decreased beyond the negative change cutoff for voltage output.

	
CURRENT_CHANGE_HIGH

	Queries or clears cutoff conditions when the current slew rate increased beyond the positive change cutoff for current output.

	
CURRENT_CHANGE_LOW

	Queries or clears cutoff conditions when the current slew rate decreased beyond the negative change cutoff for current output.

	
CURRENT_SATURATED

	Queries or clears cutoff conditions when the measured current saturates the current range.

	
VOLTAGE_MEASURE_HIGH

	Queries or clears cutoff conditions when the measured voltage exceeded the high cutoff limit for voltage output.

	
VOLTAGE_MEASURE_LOW

	Queries or clears cutoff conditions when the measured voltage fell below the low cutoff limit for voltage output.

OutputFunction

	
class nidcpower.OutputFunction

	
	
DC_VOLTAGE

	Sets the output method to DC voltage.

	
DC_CURRENT

	Sets the output method to DC current.

	
PULSE_VOLTAGE

	Sets the output method to pulse voltage.

	
PULSE_CURRENT

	Sets the output method to pulse current.

OutputStates

	
class nidcpower.OutputStates

	
	
VOLTAGE

	The channel maintains a constant voltage by adjusting the current.

	
CURRENT

	The channel maintains a constant current by adjusting the voltage.

Polarity

	
class nidcpower.Polarity

	
	
HIGH

	A high pulse occurs when the event is generated. The exported signal is low level both before and after the event is generated.

	
LOW

	A low pulse occurs when the event is generated. The exported signal is high level both before and after the event is generated.

PowerAllocationMode

	
class nidcpower.PowerAllocationMode

	
	
DISABLED

	The device attempts to source, on each active channel, the power that the present source configuration requires; NI-DCPower does not perform a sourcing power check. If the required power is greater than the maximum sourcing power, the device attempts to source the required amount and may shut down to prevent damage.

	
AUTOMATIC

	The device attempts to source, on each active channel, the power that the present source configuration requires; NI-DCPower performs a sourcing power check. If the required power is greater than the maximum sourcing power, the device does not exceed the maximum power, and NI-DCPower returns an error.

	
MANUAL

	The device attempts to source, on each active channel, the power you request with the nidcpower.Session.requested_power_allocation property; NI-DCPower performs a sourcing power check. If the requested power is either less than the required power for the present source configuration or greater than the maximum sourcing power, the device does not exceed the requested or allowed power, respectively, and NI-DCPower returns an error.

PowerSource

	
class nidcpower.PowerSource

	
	
INTERNAL

	Uses the PXI chassis power source.

	
AUXILIARY

	Uses the auxiliary power source connected to the device.

	
AUTOMATIC

	Uses the auxiliary power source if it is available; otherwise uses the PXI chassis power source.

PowerSourceInUse

	
class nidcpower.PowerSourceInUse

	
	
INTERNAL

	Uses the PXI chassis power source.

	
AUXILIARY

	Uses the auxiliary power source connected to the device. Only the NI PXI-4110, NI PXIe-4112, NI PXIe-4113, and NI PXI-4130 support this value. This is the only supported value for the NI PXIe-4112 and NI PXIe-4113.

SelfCalibrationPersistence

	
class nidcpower.SelfCalibrationPersistence

	
	
KEEP_IN_MEMORY

	Keep new self calibration values in memory only.

	
WRITE_TO_EEPROM

	Write new self calibration values to hardware.

SendSoftwareEdgeTriggerType

	
class nidcpower.SendSoftwareEdgeTriggerType

	
	
START

	Asserts the Start trigger.

	
SOURCE

	Asserts the Source trigger.

	
MEASURE

	Asserts the Measure trigger.

	
SEQUENCE_ADVANCE

	Asserts the Sequence Advance trigger.

	
PULSE

	Asserts the Pulse trigger.

	
SHUTDOWN

	Asserts the Shutdown trigger.

Sense

	
class nidcpower.Sense

	
	
LOCAL

	Local sensing is selected.

	
REMOTE

	Remote sensing is selected.

SourceMode

	
class nidcpower.SourceMode

	
	
SINGLE_POINT

	The source unit applies a single source configuration.

	
SEQUENCE

	The source unit applies a list of voltage or current configurations sequentially.

TransientResponse

	
class nidcpower.TransientResponse

	
	
NORMAL

	The output responds to changes in load at a normal speed.

	
FAST

	The output responds to changes in load quickly.

	
SLOW

	The output responds to changes in load slowly.

	
CUSTOM

	The output responds to changes in load based on specified values.

TriggerType

	
class nidcpower.TriggerType

	
	
NONE

	No trigger is configured.

	
DIGITAL_EDGE

	The data operation starts when a digital edge is detected.

	
SOFTWARE_EDGE

	The data operation starts when a software trigger occurs.

Exceptions and Warnings

Error

	
exception nidcpower.errors.Error

	Base exception type that all NI-DCPower exceptions derive from

DriverError

	
exception nidcpower.errors.DriverError

	An error originating from the NI-DCPower driver

UnsupportedConfigurationError

	
exception nidcpower.errors.UnsupportedConfigurationError

	An error due to using this module in an usupported platform.

DriverNotInstalledError

	
exception nidcpower.errors.DriverNotInstalledError

	An error due to using this module without the driver runtime installed.

DriverTooOldError

	
exception nidcpower.errors.DriverTooOldError

	An error due to using this module with an older version of the NI-DCPower driver runtime.

DriverTooNewError

	
exception nidcpower.errors.DriverTooNewError

	An error due to the NI-DCPower driver runtime being too new for this module.

InvalidRepeatedCapabilityError

	
exception nidcpower.errors.InvalidRepeatedCapabilityError

	An error due to an invalid character in a repeated capability

SelfTestError

	
exception nidcpower.errors.SelfTestError

	An error due to a failed self-test

RpcError

	
exception nidcpower.errors.RpcError

	An error specific to sessions to the NI gRPC Device Server

DriverWarning

	
exception nidcpower.errors.DriverWarning

	A warning originating from the NI-DCPower driver

Examples

You can download all nidcpower examples for latest version here [https://github.com/ni/nimi-python/releases/download/1.4.8/nidcpower_examples.zip]

nidcpower_advanced_sequence.py

(nidcpower_advanced_sequence.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_advanced_sequence.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import hightime
 5import nidcpower
 6import sys
 7
 8
 9def example(resource_name, options, voltage_max, current_max, points_per_output_function, source_delay):
10 with nidcpower.Session(resource_name=resource_name, options=options) as session:
11 # Configure the session.
12 session.source_mode = nidcpower.SourceMode.SEQUENCE
13 session.voltage_level_autorange = True
14 session.current_limit_autorange = True
15 session.source_delay = hightime.timedelta(seconds=source_delay)
16 properties_used = ['output_function', 'voltage_level', 'current_level']
17 session.create_advanced_sequence(sequence_name='my_sequence', property_names=properties_used, set_as_active_sequence=True)
18
19 voltage_per_step = voltage_max / points_per_output_function
20 for i in range(points_per_output_function):
21 session.create_advanced_sequence_step(set_as_active_step=False)
22 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
23 session.voltage_level = voltage_per_step * i
24
25 current_per_step = current_max / points_per_output_function
26 for i in range(points_per_output_function):
27 session.create_advanced_sequence_step(set_as_active_step=False)
28 session.output_function = nidcpower.OutputFunction.DC_CURRENT
29 session.current_level = current_per_step * i
30
31 # Calculate the timeout.
32 aperture_time = session.aperture_time
33 total_points = points_per_output_function * 2
34 timeout = hightime.timedelta(seconds=((source_delay + aperture_time) * total_points + 1.0))
35
36 with session.initiate():
37 channel_indices = f'0-{session.channel_count - 1}'
38 channels = session.get_channel_names(channel_indices)
39 measurement_group = [session.channels[name].fetch_multiple(total_points, timeout=timeout) for name in channels]
40
41 session.delete_advanced_sequence(sequence_name='my_sequence')
42 line_format = '{:<15} {:<4} {:<10} {:<10} {:<6}'
43 print(line_format.format('Channel', 'Num', 'Voltage', 'Current', 'In Compliance'))
44 for i, measurements in enumerate(measurement_group):
45 num = 0
46 channel_name = channels[i].strip()
47 for measurement in measurements:
48 print(line_format.format(channel_name, num, measurement.voltage, measurement.current, str(measurement.in_compliance)))
49 num += 1
50
51
52def _main(argsv):
53 parser = argparse.ArgumentParser(description='Output ramping voltage to voltage max, then ramping current to current max.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
54 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1', help='Resource names of NI SMUs.')
55 parser.add_argument('-s', '--number-steps', default=256, type=int, help='Number of steps per output function')
56 parser.add_argument('-v', '--voltage-max', default=1.0, type=float, help='Maximum voltage (V)')
57 parser.add_argument('-i', '--current-max', default=0.001, type=float, help='Maximum Current (I)')
58 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)')
59 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
60 args = parser.parse_args(argsv)
61 example(args.resource_name, args.option_string, args.voltage_max, args.current_max, args.number_steps, args.delay)
62
63
64def main():
65 _main(sys.argv[1:])
66
67
68def test_main():
69 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
70 _main(cmd_line)
71
72
73def test_example():
74 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
75 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 0.001, 256, 0.05)
76
77
78if __name__ == '__main__':
79 main()
80
81

nidcpower_lcr_source_ac_voltage.py

(nidcpower_lcr_source_ac_voltage.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_lcr_source_ac_voltage.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import nidcpower
 5import sys
 6
 7
 8def example(
 9 resource_name,
 10 options,
 11 lcr_frequency,
 12 lcr_impedance_range,
 13 cable_length,
 14 lcr_voltage_rms,
 15 lcr_dc_bias_source,
 16 lcr_dc_bias_voltage_level,
 17 lcr_measurement_time,
 18 lcr_custom_measurement_time,
 19 lcr_source_delay_mode,
 20 source_delay,
 21):
 22 with nidcpower.Session(resource_name=resource_name, options=options) as session:
 23 # Configure the session.
 24 session.instrument_mode = nidcpower.InstrumentMode.LCR
 25 session.lcr_stimulus_function = nidcpower.LCRStimulusFunction.VOLTAGE
 26 session.lcr_frequency = lcr_frequency
 27 session.lcr_impedance_range = lcr_impedance_range
 28 session.cable_length = cable_length
 29 session.lcr_voltage_amplitude = lcr_voltage_rms
 30 session.lcr_dc_bias_source = lcr_dc_bias_source
 31 session.lcr_dc_bias_voltage_level = lcr_dc_bias_voltage_level
 32 session.lcr_measurement_time = lcr_measurement_time
 33 session.lcr_custom_measurement_time = lcr_custom_measurement_time
 34 session.lcr_source_delay_mode = lcr_source_delay_mode
 35 session.source_delay = source_delay
 36
 37 with session.initiate():
 38 # Low frequencies require longer settling times than the default timeout for
 39 # wait_for_event(), hence 5.0s is set here as a reasonable timeout value
 40 session.wait_for_event(event_id=nidcpower.Event.SOURCE_COMPLETE, timeout=5.0)
 41 measurements = session.measure_multiple_lcr()
 42 for measurement in measurements:
 43 print(measurement)
 44
 45 session.reset()
 46
 47
 48def _main(argsv):
 49 parser = argparse.ArgumentParser(
 50 description='Output the specified AC voltage and DC bias voltage, then takes LCR measurements',
 51 formatter_class=argparse.ArgumentDefaultsHelpFormatter
 52)
 53 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0', help='Resource names of NI SMUs')
 54 parser.add_argument('-f', '--lcr-frequency', default=10.0e3, type=float, help='LCR frequency (Hz)')
 55 parser.add_argument('-i', '--lcr-impedance-range', default=100.0, type=float, help='LCR impedance range (Ω)')
 56 parser.add_argument('-c', '--cable-length', default='NI_STANDARD_2M', type=str, choices=tuple(nidcpower.CableLength.__members__.keys()), help='Cable length')
 57 parser.add_argument('-v', '--lcr-voltage-rms', default=700.0e-3, type=float, help='LCR voltage RMS (V RMS)')
 58 parser.add_argument('-d', '--lcr-dc-bias-source', default='OFF', type=str, choices=tuple(nidcpower.LCRDCBiasSource.__members__.keys()), help='LCR DC bias source')
 59 parser.add_argument('-dv', '--lcr-dc-bias-voltage_level', default=0.0, type=float, help='LCR DC bias voltage (V)')
 60 parser.add_argument('-t', '--lcr-measurement-time', default='MEDIUM', type=str, choices=tuple(nidcpower.LCRMeasurementTime.__members__.keys()), help='LCR measurement time')
 61 parser.add_argument('-ct', '--lcr-custom-measurement-time', default=10.0e-3, type=float, help='LCR custom measurement time (s)')
 62 parser.add_argument('-sm', '--lcr-source-delay-mode', default='AUTOMATIC', type=str, choices=tuple(nidcpower.LCRSourceDelayMode.__members__.keys()), help='LCR source delay mode')
 63 parser.add_argument('-s', '--source-delay', default=16.66e-3, type=float, help='Source delay (s)')
 64 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
 65 args = parser.parse_args(argsv)
 66 example(
 67 resource_name=args.resource_name,
 68 options=args.option_string,
 69 lcr_frequency=args.lcr_frequency,
 70 lcr_impedance_range=args.lcr_impedance_range,
 71 cable_length=getattr(nidcpower.CableLength, args.cable_length),
 72 lcr_voltage_rms=args.lcr_voltage_rms,
 73 lcr_dc_bias_source=getattr(nidcpower.LCRDCBiasSource, args.lcr_dc_bias_source),
 74 lcr_dc_bias_voltage_level=args.lcr_dc_bias_voltage_level,
 75 lcr_measurement_time=getattr(nidcpower.LCRMeasurementTime, args.lcr_measurement_time),
 76 lcr_custom_measurement_time=args.lcr_custom_measurement_time,
 77 lcr_source_delay_mode=getattr(nidcpower.LCRSourceDelayMode, args.lcr_source_delay_mode),
 78 source_delay=args.source_delay,
 79)
 80
 81
 82def main():
 83 _main(sys.argv[1:])
 84
 85
 86def test_example():
 87 example(
 88 resource_name='PXI1Slot2/0',
 89 options={'simulate': True, 'driver_setup': {'Model': '4190', 'BoardType': 'PXIe', }, },
 90 lcr_frequency=10.0e3,
 91 lcr_impedance_range=100.0,
 92 cable_length=nidcpower.CableLength.NI_STANDARD_2M,
 93 lcr_voltage_rms=700.0e-3,
 94 lcr_dc_bias_source=nidcpower.LCRDCBiasSource.OFF,
 95 lcr_dc_bias_voltage_level=0.0,
 96 lcr_measurement_time=nidcpower.LCRMeasurementTime.MEDIUM,
 97 lcr_custom_measurement_time=10.0e-3,
 98 lcr_source_delay_mode=nidcpower.LCRSourceDelayMode.AUTOMATIC,
 99 source_delay=16.66e-3,
100)
101
102
103def test_main():
104 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4190; BoardType:PXIe',]
105 _main(cmd_line)
106
107
108if __name__ == '__main__':
109 main()

nidcpower_measure_record.py

(nidcpower_measure_record.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_measure_record.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import nidcpower
 5import sys
 6
 7
 8def example(resource_name, options, voltage, length):
 9 with nidcpower.Session(resource_name=resource_name, options=options) as session:
10 # Configure the session.
11 session.measure_record_length = length
12 session.measure_record_length_is_finite = True
13 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
14 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
15 session.voltage_level = voltage
16
17 session.commit()
18 print(f'Effective measurement rate: {session.measure_record_delta_time / 1} S/s')
19
20 print('Channel Num Voltage Current In Compliance')
21 row_format = '{0:15} {1:3d} {2:8.6f} {3:8.6f} {4}'
22 with session.initiate():
23 channel_indices = f'0-{session.channel_count - 1}'
24 channels = session.get_channel_names(channel_indices)
25 for i, channel_name in enumerate(channels):
26 samples_acquired = 0
27 while samples_acquired < length:
28 measurements = session.channels[channel_name].fetch_multiple(count=session.fetch_backlog)
29 samples_acquired += len(measurements)
30 for i in range(len(measurements)):
31 print(row_format.format(channel_name, i, measurements[i].voltage, measurements[i].current, measurements[i].in_compliance))
32
33
34def _main(argsv):
35 parser = argparse.ArgumentParser(description='Outputs the specified voltage, then takes the specified number of voltage and current readings.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
36 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1', help='Resource names of NI SMUs.')
37 parser.add_argument('-l', '--length', default='20', type=int, help='Measure record length per channel')
38 parser.add_argument('-v', '--voltage', default=5.0, type=float, help='Voltage level (V)')
39 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
40 args = parser.parse_args(argsv)
41 example(args.resource_name, args.option_string, args.voltage, args.length)
42
43
44def main():
45 _main(sys.argv[1:])
46
47
48def test_example():
49 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
50 example('PXI1Slot2/0, PXI1Slot3/1', options, 5.0, 20)
51
52
53def test_main():
54 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
55 _main(cmd_line)
56
57
58if __name__ == '__main__':
59 main()

nidcpower_source_delay_measure.py

(nidcpower_source_delay_measure.py) [https://github.com/ni/nimi-python/blob/master/src/nidcpower/examples/nidcpower_source_delay_measure.py]

 1#!/usr/bin/python
 2
 3import argparse
 4import hightime
 5import nidcpower
 6import sys
 7
 8
 9def print_fetched_measurements(measurements):
10 print(f' Voltage : {measurements[0].voltage:f} V')
11 print(f' Current: {measurements[0].current:f} A')
12 print(f' In compliance: {measurements[0].in_compliance}')
13
14
15def example(resource_name, options, voltage1, voltage2, delay):
16 timeout = hightime.timedelta(seconds=(delay + 1.0))
17
18 with nidcpower.Session(resource_name=resource_name, options=options) as session:
19 # Configure the session.
20 session.source_mode = nidcpower.SourceMode.SINGLE_POINT
21 session.output_function = nidcpower.OutputFunction.DC_VOLTAGE
22 session.current_limit = .06
23 session.voltage_level_range = 5.0
24 session.current_limit_range = .06
25 session.source_delay = hightime.timedelta(seconds=delay)
26 session.measure_when = nidcpower.MeasureWhen.AUTOMATICALLY_AFTER_SOURCE_COMPLETE
27 session.voltage_level = voltage1
28
29 with session.initiate():
30 channel_indices = f'0-{session.channel_count - 1}'
31 channels = session.get_channel_names(channel_indices)
32 for channel_name in channels:
33 print(f'Channel: {channel_name}')
34 print('---------------------------------')
35 print('Voltage 1:')
36 print_fetched_measurements(session.channels[channel_name].fetch_multiple(count=1, timeout=timeout))
37 session.voltage_level = voltage2 # on-the-fly set
38 print('Voltage 2:')
39 print_fetched_measurements(session.channels[channel_name].fetch_multiple(count=1, timeout=timeout))
40 session.output_enabled = False
41 print('')
42
43
44def _main(argsv):
45 parser = argparse.ArgumentParser(description='Outputs voltage 1, waits for source delay, and then takes a measurement. Then orepeat with voltage 2.', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
46 parser.add_argument('-n', '--resource-name', default='PXI1Slot2/0, PXI1Slot3/0-1', help='Resource names of an NI SMUs.')
47 parser.add_argument('-v1', '--voltage1', default=1.0, type=float, help='Voltage level 1 (V)')
48 parser.add_argument('-v2', '--voltage2', default=2.0, type=float, help='Voltage level 2 (V)')
49 parser.add_argument('-d', '--delay', default=0.05, type=float, help='Source delay (s)')
50 parser.add_argument('-op', '--option-string', default='', type=str, help='Option string')
51 args = parser.parse_args(argsv)
52 example(args.resource_name, args.option_string, args.voltage1, args.voltage2, args.delay)
53
54
55def main():
56 _main(sys.argv[1:])
57
58
59def test_main():
60 cmd_line = ['--option-string', 'Simulate=1, DriverSetup=Model:4162; BoardType:PXIe',]
61 _main(cmd_line)
62
63
64def test_example():
65 options = {'simulate': True, 'driver_setup': {'Model': '4162', 'BoardType': 'PXIe', }, }
66 example('PXI1Slot2/0, PXI1Slot3/1', options, 1.0, 2.0, 0.05)
67
68
69if __name__ == '__main__':
70 main()
71
72

gRPC Support

Support for using NI-DCPower over gRPC

SessionInitializationBehavior

	
class nidcpower.SessionInitializationBehavior

	
	
AUTO

	The NI gRPC Device Server will attach to an existing session with the specified name if it exists,
otherwise the server will initialize a new session.

Note

When using the Session as a context manager and the context exits, the behavior depends on what happened when the constructor
was called. If it resulted in a new session being initialized on the NI gRPC Device Server, then it will automatically close the
server session. If it instead attached to an existing session, then it will detach from the server session and leave it open.

	
INITIALIZE_SERVER_SESSION

	Require the NI gRPC Device Server to initialize a new session with the specified name.

Note

When using the Session as a context manager and the context exits, it will automatically close the
server session.

	
ATTACH_TO_SERVER_SESSION

	Require the NI gRPC Device Server to attach to an existing session with the specified name.

Note

When using the Session as a context manager and the context exits, it will detach from the server session
and leave it open.

GrpcSessionOptions

	
class nidcpower.GrpcSessionOptions(self, grpc_channel, session_name, initialization_behavior=SessionInitializationBehavior.AUTO)

	Collection of options that specifies session behaviors related to gRPC.

Creates and returns an object you can pass to a Session constructor.

	Parameters:

	
	grpc_channel (grpc.Channel) – Specifies the channel to the NI gRPC Device Server.

	session_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – User-specified name that identifies the driver session on the NI gRPC Device Server.

This is different from the resource name parameter many APIs take as a separate
parameter. Specifying a name makes it easy to share sessions across multiple gRPC clients.
You can use an empty string if you want to always initialize a new session on the server.
To attach to an existing session, you must specify the session name it was initialized with.

	initialization_behavior (nidcpower.SessionInitializationBehavior) – Specifies whether it is acceptable to initialize a new session or attach to an existing one, or if only one of the behaviors is desired.

The driver session exists on the NI gRPC Device Server.

 Python Module Index

 n

 		 	

 		
 n	

 	
 	
 nidcpower	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	abort() (in module nidcpower.Session)

 	active_advanced_sequence (in module nidcpower.Session)

 	active_advanced_sequence_step (in module nidcpower.Session)

 	actual_power_allocation (in module nidcpower.Session)

 	ALL (nidcpower.OutputCutoffReason attribute)

 	aperture_time (in module nidcpower.Session)

 	aperture_time_auto_mode (in module nidcpower.Session)

 	aperture_time_units (in module nidcpower.Session)

 	ApertureTimeAutoMode (class in nidcpower)

 	ApertureTimeUnits (class in nidcpower)

 	AS_CONFIGURED (nidcpower.LCROpenShortLoadCompensationDataSource attribute)

 	AS_DEFINED (nidcpower.LCROpenShortLoadCompensationDataSource attribute)

 	ASYMMETRIC (nidcpower.ComplianceLimitSymmetry attribute)

 	ATTACH_TO_SERVER_SESSION (nidcpower.SessionInitializationBehavior attribute)

 	AUTO (nidcpower.AutorangeApertureTimeMode attribute)

 	(nidcpower.SessionInitializationBehavior attribute)

 	auto_zero (in module nidcpower.Session)

 	AUTOMATIC (nidcpower.ConductionVoltageMode attribute)

 	(nidcpower.LCRSourceDelayMode attribute)

 	(nidcpower.PowerAllocationMode attribute)

 	(nidcpower.PowerSource attribute)

 	
 	AUTOMATICALLY_AFTER_SOURCE_COMPLETE (nidcpower.MeasureWhen attribute)

 	autorange (in module nidcpower.Session)

 	autorange_aperture_time_mode (in module nidcpower.Session)

 	autorange_behavior (in module nidcpower.Session)

 	autorange_maximum_delay_after_range_change (in module nidcpower.Session)

 	autorange_minimum_aperture_time (in module nidcpower.Session)

 	autorange_minimum_aperture_time_units (in module nidcpower.Session)

 	autorange_minimum_current_range (in module nidcpower.Session)

 	autorange_minimum_voltage_range (in module nidcpower.Session)

 	autorange_threshold_mode (in module nidcpower.Session)

 	AutorangeApertureTimeMode (class in nidcpower)

 	AutorangeBehavior (class in nidcpower)

 	AutorangeThresholdMode (class in nidcpower)

 	AutoZero (class in nidcpower)

 	AUXILIARY (nidcpower.PowerSource attribute)

 	(nidcpower.PowerSourceInUse attribute)

 	auxiliary_power_source_available (in module nidcpower.Session)

C

 	
 	cable_length (in module nidcpower.Session)

 	CableLength (class in nidcpower)

 	channel_count (in module nidcpower.Session)

 	channels (nidcpower.Session.nidcpower.Session attribute)

 	clear_latched_output_cutoff_state() (in module nidcpower.Session)

 	close() (in module nidcpower.Session)

 	commit() (in module nidcpower.Session)

 	compliance_limit_symmetry (in module nidcpower.Session)

 	ComplianceLimitSymmetry (class in nidcpower)

 	conduction_voltage_mode (in module nidcpower.Session)

 	conduction_voltage_off_threshold (in module nidcpower.Session)

 	conduction_voltage_on_threshold (in module nidcpower.Session)

 	ConductionVoltageMode (class in nidcpower)

 	configure_aperture_time() (in module nidcpower.Session)

 	configure_lcr_compensation() (in module nidcpower.Session)

 	configure_lcr_custom_cable_compensation() (in module nidcpower.Session)

 	create_advanced_sequence() (in module nidcpower.Session)

 	create_advanced_sequence_commit_step() (in module nidcpower.Session)

 	create_advanced_sequence_step() (in module nidcpower.Session)

 	CURRENT (nidcpower.LCRDCBiasSource attribute)

 	(nidcpower.LCRStimulusFunction attribute)

 	(nidcpower.MeasurementTypes attribute)

 	(nidcpower.OutputStates attribute)

 	CURRENT_CHANGE_HIGH (nidcpower.OutputCutoffReason attribute)

 	
 	CURRENT_CHANGE_LOW (nidcpower.OutputCutoffReason attribute)

 	current_compensation_frequency (in module nidcpower.Session)

 	current_gain_bandwidth (in module nidcpower.Session)

 	current_level (in module nidcpower.Session)

 	current_level_autorange (in module nidcpower.Session)

 	current_level_falling_slew_rate (in module nidcpower.Session)

 	current_level_range (in module nidcpower.Session)

 	current_level_rising_slew_rate (in module nidcpower.Session)

 	current_limit (in module nidcpower.Session)

 	current_limit_autorange (in module nidcpower.Session)

 	current_limit_behavior (in module nidcpower.Session)

 	current_limit_high (in module nidcpower.Session)

 	current_limit_low (in module nidcpower.Session)

 	current_limit_range (in module nidcpower.Session)

 	CURRENT_MEASURE_HIGH (nidcpower.OutputCutoffReason attribute)

 	CURRENT_MEASURE_LOW (nidcpower.OutputCutoffReason attribute)

 	current_pole_zero_ratio (in module nidcpower.Session)

 	CURRENT_SATURATED (nidcpower.OutputCutoffReason attribute)

 	CurrentLimitBehavior (class in nidcpower)

 	CUSTOM (nidcpower.AutorangeApertureTimeMode attribute)

 	(nidcpower.LCRDCBiasTransientResponse attribute)

 	(nidcpower.LCRMeasurementTime attribute)

 	(nidcpower.TransientResponse attribute)

 	CUSTOM_AS_CONFIGURED (nidcpower.CableLength attribute)

 	CUSTOM_ONBOARD_STORAGE (nidcpower.CableLength attribute)

D

 	
 	DC_CURRENT (nidcpower.OutputFunction attribute)

 	dc_noise_rejection (in module nidcpower.Session)

 	DC_VOLTAGE (nidcpower.OutputFunction attribute)

 	DCNoiseRejection (class in nidcpower)

 	delete_advanced_sequence() (in module nidcpower.Session)

 	DIGITAL_EDGE (nidcpower.TriggerType attribute)

 	digital_edge_measure_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_pulse_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_sequence_advance_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_shutdown_trigger_input_terminal (in module nidcpower.Session)

 	
 	digital_edge_source_trigger_input_terminal (in module nidcpower.Session)

 	digital_edge_start_trigger_input_terminal (in module nidcpower.Session)

 	disable() (in module nidcpower.Session)

 	DISABLED (nidcpower.ConductionVoltageMode attribute)

 	(nidcpower.PowerAllocationMode attribute)

 	driver_setup (in module nidcpower.Session)

 	DriverError

 	DriverNotInstalledError

 	DriverTooNewError

 	DriverTooOldError

 	DriverWarning

E

 	
 	E_LOAD (nidcpower.InstrumentMode attribute)

 	ENABLED (nidcpower.ConductionVoltageMode attribute)

 	Error

 	Event (class in nidcpower)

 	EventOutputBehavior (class in nidcpower)

 	EventToggleInitialState (class in nidcpower)

 	
 	export_attribute_configuration_buffer() (in module nidcpower.Session)

 	export_attribute_configuration_file() (in module nidcpower.Session)

 	exported_measure_trigger_output_terminal (in module nidcpower.Session)

 	exported_pulse_trigger_output_terminal (in module nidcpower.Session)

 	exported_sequence_advance_trigger_output_terminal (in module nidcpower.Session)

 	exported_source_trigger_output_terminal (in module nidcpower.Session)

 	exported_start_trigger_output_terminal (in module nidcpower.Session)

F

 	
 	FAST (nidcpower.TransientResponse attribute)

 	FAST_STEP (nidcpower.AutorangeThresholdMode attribute)

 	
 	fetch_backlog (in module nidcpower.Session)

 	fetch_multiple() (in module nidcpower.Session)

 	fetch_multiple_lcr() (in module nidcpower.Session)

G

 	
 	get_channel_name() (in module nidcpower.Session)

 	get_channel_names() (in module nidcpower.Session)

 	get_ext_cal_last_date_and_time() (in module nidcpower.Session)

 	get_ext_cal_last_temp() (in module nidcpower.Session)

 	get_ext_cal_recommended_interval() (in module nidcpower.Session)

 	
 	get_lcr_compensation_data() (in module nidcpower.Session)

 	get_lcr_compensation_last_date_and_time() (in module nidcpower.Session)

 	get_lcr_custom_cable_compensation_data() (in module nidcpower.Session)

 	get_self_cal_last_date_and_time() (in module nidcpower.Session)

 	get_self_cal_last_temp() (in module nidcpower.Session)

 	GrpcSessionOptions (class in nidcpower)

H

 	
 	HIGH (nidcpower.EventToggleInitialState attribute)

 	(nidcpower.OutputCapacitance attribute)

 	(nidcpower.Polarity attribute)

 	
 	HIGH_HYSTERESIS (nidcpower.AutorangeThresholdMode attribute)

 	HOLD (nidcpower.AutorangeThresholdMode attribute)

I

 	
 	IDEAL_CAPACITANCE (nidcpower.LCRReferenceValueType attribute)

 	IDEAL_INDUCTANCE (nidcpower.LCRReferenceValueType attribute)

 	IDEAL_RESISTANCE (nidcpower.LCRReferenceValueType attribute)

 	IMPEDANCE (nidcpower.LCRReferenceValueType attribute)

 	IMPEDANCE_RANGE (nidcpower.LCRImpedanceRangeSource attribute)

 	import_attribute_configuration_buffer() (in module nidcpower.Session)

 	import_attribute_configuration_file() (in module nidcpower.Session)

 	INITIALIZE_SERVER_SESSION (nidcpower.SessionInitializationBehavior attribute)

 	initiate() (in module nidcpower.Session)

 	instrument_firmware_revision (in module nidcpower.Session)

 	
 	instrument_manufacturer (in module nidcpower.Session)

 	instrument_mode (in module nidcpower.Session)

 	instrument_model (in module nidcpower.Session)

 	InstrumentMode (class in nidcpower)

 	instruments (nidcpower.Session.nidcpower.Session attribute)

 	interlock_input_open (in module nidcpower.Session)

 	INTERNAL (nidcpower.PowerSource attribute)

 	(nidcpower.PowerSourceInUse attribute)

 	InvalidRepeatedCapabilityError

 	io_resource_descriptor (in module nidcpower.Session)

 	isolation_state (in module nidcpower.Session)

K

 	
 	KEEP_IN_MEMORY (nidcpower.SelfCalibrationPersistence attribute)

L

 	
 	LCR (nidcpower.InstrumentMode attribute)

 	lcr_ac_dither_enabled (in module nidcpower.Session)

 	lcr_ac_electrical_cable_length_delay (in module nidcpower.Session)

 	lcr_actual_load_reactance (in module nidcpower.Session)

 	lcr_actual_load_resistance (in module nidcpower.Session)

 	lcr_automatic_level_control (in module nidcpower.Session)

 	lcr_current_amplitude (in module nidcpower.Session)

 	lcr_current_range (in module nidcpower.Session)

 	lcr_custom_measurement_time (in module nidcpower.Session)

 	lcr_dc_bias_automatic_level_control (in module nidcpower.Session)

 	lcr_dc_bias_current_level (in module nidcpower.Session)

 	lcr_dc_bias_current_range (in module nidcpower.Session)

 	lcr_dc_bias_source (in module nidcpower.Session)

 	lcr_dc_bias_transient_response (in module nidcpower.Session)

 	lcr_dc_bias_voltage_level (in module nidcpower.Session)

 	lcr_dc_bias_voltage_range (in module nidcpower.Session)

 	lcr_frequency (in module nidcpower.Session)

 	lcr_impedance_auto_range (in module nidcpower.Session)

 	lcr_impedance_range (in module nidcpower.Session)

 	lcr_impedance_range_source (in module nidcpower.Session)

 	lcr_load_capacitance (in module nidcpower.Session)

 	lcr_load_compensation_enabled (in module nidcpower.Session)

 	lcr_load_inductance (in module nidcpower.Session)

 	lcr_load_resistance (in module nidcpower.Session)

 	lcr_measured_load_reactance (in module nidcpower.Session)

 	lcr_measured_load_resistance (in module nidcpower.Session)

 	lcr_measurement_time (in module nidcpower.Session)

 	lcr_open_compensation_enabled (in module nidcpower.Session)

 	lcr_open_conductance (in module nidcpower.Session)

 	
 	lcr_open_short_load_compensation_data_source (in module nidcpower.Session)

 	lcr_open_susceptance (in module nidcpower.Session)

 	lcr_short_compensation_enabled (in module nidcpower.Session)

 	lcr_short_custom_cable_compensation_enabled (in module nidcpower.Session)

 	lcr_short_reactance (in module nidcpower.Session)

 	lcr_short_resistance (in module nidcpower.Session)

 	lcr_source_aperture_time (in module nidcpower.Session)

 	lcr_source_delay_mode (in module nidcpower.Session)

 	lcr_stimulus_function (in module nidcpower.Session)

 	lcr_voltage_amplitude (in module nidcpower.Session)

 	lcr_voltage_range (in module nidcpower.Session)

 	LCRCompensationType (class in nidcpower)

 	LCRDCBiasSource (class in nidcpower)

 	LCRDCBiasTransientResponse (class in nidcpower)

 	LCRImpedanceRangeSource (class in nidcpower)

 	LCRMeasurementTime (class in nidcpower)

 	LCROpenShortLoadCompensationDataSource (class in nidcpower)

 	LCRReferenceValueType (class in nidcpower)

 	LCRSourceDelayMode (class in nidcpower)

 	LCRStimulusFunction (class in nidcpower)

 	LOAD (nidcpower.LCRCompensationType attribute)

 	LOAD_CONFIGURATION (nidcpower.LCRImpedanceRangeSource attribute)

 	LOCAL (nidcpower.Sense attribute)

 	lock() (in module nidcpower.Session)

 	logical_name (in module nidcpower.Session)

 	LONG (nidcpower.ApertureTimeAutoMode attribute)

 	(nidcpower.LCRMeasurementTime attribute)

 	LOW (nidcpower.EventToggleInitialState attribute)

 	(nidcpower.OutputCapacitance attribute)

 	(nidcpower.Polarity attribute)

M

 	
 	MANUAL (nidcpower.LCRSourceDelayMode attribute)

 	(nidcpower.PowerAllocationMode attribute)

 	MEASURE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	measure() (in module nidcpower.Session)

 	measure_buffer_size (in module nidcpower.Session)

 	MEASURE_COMPLETE (nidcpower.Event attribute)

 	measure_complete_event_delay (in module nidcpower.Session)

 	measure_complete_event_output_behavior (in module nidcpower.Session)

 	measure_complete_event_output_terminal (in module nidcpower.Session)

 	measure_complete_event_pulse_polarity (in module nidcpower.Session)

 	measure_complete_event_pulse_width (in module nidcpower.Session)

 	measure_complete_event_toggle_initial_state (in module nidcpower.Session)

 	measure_multiple() (in module nidcpower.Session)

 	
 	measure_multiple_lcr() (in module nidcpower.Session)

 	measure_record_delta_time (in module nidcpower.Session)

 	measure_record_length (in module nidcpower.Session)

 	measure_record_length_is_finite (in module nidcpower.Session)

 	measure_trigger_type (in module nidcpower.Session)

 	measure_when (in module nidcpower.Session)

 	MeasurementTypes (class in nidcpower)

 	MeasureWhen (class in nidcpower)

 	MEDIUM (nidcpower.LCRMeasurementTime attribute)

 	MEDIUM_HYSTERESIS (nidcpower.AutorangeThresholdMode attribute)

 	merged_channels (in module nidcpower.Session)

 	
 module

 	nidcpower

N

 	
 	NI_STANDARD_0_5M (nidcpower.CableLength attribute)

 	NI_STANDARD_1M (nidcpower.CableLength attribute)

 	NI_STANDARD_2M (nidcpower.CableLength attribute)

 	NI_STANDARD_4M (nidcpower.CableLength attribute)

 	NI_STANDARD_TRIAXIAL_1M (nidcpower.CableLength attribute)

 	NI_STANDARD_TRIAXIAL_2M (nidcpower.CableLength attribute)

 	NI_STANDARD_TRIAXIAL_4M (nidcpower.CableLength attribute)

 	
 	
 nidcpower

 	module

 	NONE (nidcpower.TriggerType attribute)

 	NORMAL (nidcpower.ApertureTimeAutoMode attribute)

 	(nidcpower.AutorangeThresholdMode attribute)

 	(nidcpower.DCNoiseRejection attribute)

 	(nidcpower.LCRDCBiasTransientResponse attribute)

 	(nidcpower.TransientResponse attribute)

O

 	
 	OFF (nidcpower.ApertureTimeAutoMode attribute)

 	(nidcpower.AutoZero attribute)

 	(nidcpower.LCRDCBiasSource attribute)

 	ON (nidcpower.AutoZero attribute)

 	ON_DEMAND (nidcpower.MeasureWhen attribute)

 	ON_MEASURE_TRIGGER (nidcpower.MeasureWhen attribute)

 	ONBOARD_STORAGE (nidcpower.LCROpenShortLoadCompensationDataSource attribute)

 	ONCE (nidcpower.AutoZero attribute)

 	OPEN (nidcpower.LCRCompensationType attribute)

 	OPEN_CUSTOM_CABLE (nidcpower.LCRCompensationType attribute)

 	output_capacitance (in module nidcpower.Session)

 	output_connected (in module nidcpower.Session)

 	output_cutoff_current_change_limit_high (in module nidcpower.Session)

 	output_cutoff_current_change_limit_low (in module nidcpower.Session)

 	output_cutoff_current_measure_limit_high (in module nidcpower.Session)

 	output_cutoff_current_measure_limit_low (in module nidcpower.Session)

 	output_cutoff_current_overrange_enabled (in module nidcpower.Session)

 	
 	output_cutoff_delay (in module nidcpower.Session)

 	output_cutoff_enabled (in module nidcpower.Session)

 	output_cutoff_voltage_change_limit_high (in module nidcpower.Session)

 	output_cutoff_voltage_change_limit_low (in module nidcpower.Session)

 	output_cutoff_voltage_measure_limit_high (in module nidcpower.Session)

 	output_cutoff_voltage_measure_limit_low (in module nidcpower.Session)

 	output_cutoff_voltage_output_limit_high (in module nidcpower.Session)

 	output_cutoff_voltage_output_limit_low (in module nidcpower.Session)

 	output_enabled (in module nidcpower.Session)

 	output_function (in module nidcpower.Session)

 	output_resistance (in module nidcpower.Session)

 	OutputCapacitance (class in nidcpower)

 	OutputCutoffReason (class in nidcpower)

 	OutputFunction (class in nidcpower)

 	OutputStates (class in nidcpower)

 	overranging_enabled (in module nidcpower.Session)

 	ovp_enabled (in module nidcpower.Session)

 	ovp_limit (in module nidcpower.Session)

P

 	
 	perform_lcr_load_compensation() (in module nidcpower.Session)

 	perform_lcr_open_compensation() (in module nidcpower.Session)

 	perform_lcr_open_custom_cable_compensation() (in module nidcpower.Session)

 	perform_lcr_short_compensation() (in module nidcpower.Session)

 	perform_lcr_short_custom_cable_compensation() (in module nidcpower.Session)

 	Polarity (class in nidcpower)

 	power_allocation_mode (in module nidcpower.Session)

 	POWER_LINE_CYCLES (nidcpower.ApertureTimeUnits attribute)

 	power_line_frequency (in module nidcpower.Session)

 	power_source (in module nidcpower.Session)

 	power_source_in_use (in module nidcpower.Session)

 	PowerAllocationMode (class in nidcpower)

 	PowerSource (class in nidcpower)

 	PowerSourceInUse (class in nidcpower)

 	PULSE (nidcpower.EventOutputBehavior attribute)

 	(nidcpower.SendSoftwareEdgeTriggerType attribute)

 	pulse_bias_current_level (in module nidcpower.Session)

 	pulse_bias_current_limit (in module nidcpower.Session)

 	pulse_bias_current_limit_high (in module nidcpower.Session)

 	pulse_bias_current_limit_low (in module nidcpower.Session)

 	pulse_bias_delay (in module nidcpower.Session)

 	pulse_bias_voltage_level (in module nidcpower.Session)

 	pulse_bias_voltage_limit (in module nidcpower.Session)

 	
 	pulse_bias_voltage_limit_high (in module nidcpower.Session)

 	pulse_bias_voltage_limit_low (in module nidcpower.Session)

 	PULSE_COMPLETE (nidcpower.Event attribute)

 	pulse_complete_event_output_terminal (in module nidcpower.Session)

 	pulse_complete_event_pulse_polarity (in module nidcpower.Session)

 	pulse_complete_event_pulse_width (in module nidcpower.Session)

 	PULSE_CURRENT (nidcpower.OutputFunction attribute)

 	pulse_current_level (in module nidcpower.Session)

 	pulse_current_level_range (in module nidcpower.Session)

 	pulse_current_limit (in module nidcpower.Session)

 	pulse_current_limit_high (in module nidcpower.Session)

 	pulse_current_limit_low (in module nidcpower.Session)

 	pulse_current_limit_range (in module nidcpower.Session)

 	pulse_off_time (in module nidcpower.Session)

 	pulse_on_time (in module nidcpower.Session)

 	pulse_trigger_type (in module nidcpower.Session)

 	PULSE_VOLTAGE (nidcpower.OutputFunction attribute)

 	pulse_voltage_level (in module nidcpower.Session)

 	pulse_voltage_level_range (in module nidcpower.Session)

 	pulse_voltage_limit (in module nidcpower.Session)

 	pulse_voltage_limit_high (in module nidcpower.Session)

 	pulse_voltage_limit_low (in module nidcpower.Session)

 	pulse_voltage_limit_range (in module nidcpower.Session)

Q

 	
 	query_in_compliance() (in module nidcpower.Session)

 	query_instrument_status (in module nidcpower.Session)

 	query_latched_output_cutoff_state() (in module nidcpower.Session)

 	
 	query_max_current_limit() (in module nidcpower.Session)

 	query_max_voltage_level() (in module nidcpower.Session)

 	query_min_current_limit() (in module nidcpower.Session)

 	query_output_state() (in module nidcpower.Session)

R

 	
 	read_current_temperature() (in module nidcpower.Session)

 	READY_FOR_PULSE_TRIGGER (nidcpower.Event attribute)

 	ready_for_pulse_trigger_event_output_terminal (in module nidcpower.Session)

 	ready_for_pulse_trigger_event_pulse_polarity (in module nidcpower.Session)

 	ready_for_pulse_trigger_event_pulse_width (in module nidcpower.Session)

 	REGULATE (nidcpower.CurrentLimitBehavior attribute)

 	
 	REMOTE (nidcpower.Sense attribute)

 	requested_power_allocation (in module nidcpower.Session)

 	reset() (in module nidcpower.Session)

 	reset_average_before_measurement (in module nidcpower.Session)

 	reset_device() (in module nidcpower.Session)

 	reset_with_defaults() (in module nidcpower.Session)

 	RpcError

S

 	
 	samples_to_average (in module nidcpower.Session)

 	SECOND_ORDER (nidcpower.DCNoiseRejection attribute)

 	SECONDS (nidcpower.ApertureTimeUnits attribute)

 	self_cal() (in module nidcpower.Session)

 	self_calibration_persistence (in module nidcpower.Session)

 	self_test() (in module nidcpower.Session)

 	SelfCalibrationPersistence (class in nidcpower)

 	SelfTestError

 	send_software_edge_trigger() (in module nidcpower.Session)

 	SendSoftwareEdgeTriggerType (class in nidcpower)

 	Sense (class in nidcpower)

 	sense (in module nidcpower.Session)

 	SEQUENCE (nidcpower.SourceMode attribute)

 	SEQUENCE_ADVANCE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	sequence_advance_trigger_type (in module nidcpower.Session)

 	SEQUENCE_ENGINE_DONE (nidcpower.Event attribute)

 	sequence_engine_done_event_output_behavior (in module nidcpower.Session)

 	sequence_engine_done_event_output_terminal (in module nidcpower.Session)

 	sequence_engine_done_event_pulse_polarity (in module nidcpower.Session)

 	sequence_engine_done_event_pulse_width (in module nidcpower.Session)

 	sequence_engine_done_event_toggle_initial_state (in module nidcpower.Session)

 	SEQUENCE_ITERATION_COMPLETE (nidcpower.Event attribute)

 	sequence_iteration_complete_event_output_behavior (in module nidcpower.Session)

 	sequence_iteration_complete_event_output_terminal (in module nidcpower.Session)

 	sequence_iteration_complete_event_pulse_polarity (in module nidcpower.Session)

 	sequence_iteration_complete_event_pulse_width (in module nidcpower.Session)

 	sequence_iteration_complete_event_toggle_initial_state (in module nidcpower.Session)

 	sequence_loop_count (in module nidcpower.Session)

 	sequence_loop_count_is_finite (in module nidcpower.Session)

 	sequence_step_delta_time (in module nidcpower.Session)

 	sequence_step_delta_time_enabled (in module nidcpower.Session)

 	serial_number (in module nidcpower.Session)

 	
 	Session (class in nidcpower)

 	SessionInitializationBehavior (class in nidcpower)

 	set_sequence() (in module nidcpower.Session)

 	SHORT (nidcpower.ApertureTimeAutoMode attribute)

 	(nidcpower.LCRCompensationType attribute)

 	(nidcpower.LCRMeasurementTime attribute)

 	SHORT_CUSTOM_CABLE (nidcpower.LCRCompensationType attribute)

 	SHUTDOWN (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	shutdown_trigger_type (in module nidcpower.Session)

 	simulate (in module nidcpower.Session)

 	SINGLE_POINT (nidcpower.SourceMode attribute)

 	SLOW (nidcpower.TransientResponse attribute)

 	SMU_PS (nidcpower.InstrumentMode attribute)

 	SOFTWARE_EDGE (nidcpower.TriggerType attribute)

 	SOURCE (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	SOURCE_COMPLETE (nidcpower.Event attribute)

 	source_complete_event_output_behavior (in module nidcpower.Session)

 	source_complete_event_output_terminal (in module nidcpower.Session)

 	source_complete_event_pulse_polarity (in module nidcpower.Session)

 	source_complete_event_pulse_width (in module nidcpower.Session)

 	source_complete_event_toggle_initial_state (in module nidcpower.Session)

 	source_delay (in module nidcpower.Session)

 	source_mode (in module nidcpower.Session)

 	source_trigger_type (in module nidcpower.Session)

 	SourceMode (class in nidcpower)

 	specific_driver_description (in module nidcpower.Session)

 	specific_driver_prefix (in module nidcpower.Session)

 	specific_driver_revision (in module nidcpower.Session)

 	specific_driver_vendor (in module nidcpower.Session)

 	START (nidcpower.SendSoftwareEdgeTriggerType attribute)

 	start_trigger_type (in module nidcpower.Session)

 	supported_instrument_models (in module nidcpower.Session)

 	SYMMETRIC (nidcpower.ComplianceLimitSymmetry attribute)

T

 	
 	TOGGLE (nidcpower.EventOutputBehavior attribute)

 	transient_response (in module nidcpower.Session)

 	
 	TransientResponse (class in nidcpower)

 	TriggerType (class in nidcpower)

 	TRIP (nidcpower.CurrentLimitBehavior attribute)

U

 	
 	unlock() (in module nidcpower.Session)

 	UnsupportedConfigurationError

 	
 	UP (nidcpower.AutorangeBehavior attribute)

 	UP_AND_DOWN (nidcpower.AutorangeBehavior attribute)

 	UP_TO_LIMIT_THEN_DOWN (nidcpower.AutorangeBehavior attribute)

V

 	
 	VOLTAGE (nidcpower.LCRDCBiasSource attribute)

 	(nidcpower.LCRStimulusFunction attribute)

 	(nidcpower.MeasurementTypes attribute)

 	(nidcpower.OutputStates attribute)

 	VOLTAGE_CHANGE_HIGH (nidcpower.OutputCutoffReason attribute)

 	VOLTAGE_CHANGE_LOW (nidcpower.OutputCutoffReason attribute)

 	voltage_compensation_frequency (in module nidcpower.Session)

 	voltage_gain_bandwidth (in module nidcpower.Session)

 	voltage_level (in module nidcpower.Session)

 	voltage_level_autorange (in module nidcpower.Session)

 	
 	voltage_level_range (in module nidcpower.Session)

 	voltage_limit (in module nidcpower.Session)

 	voltage_limit_autorange (in module nidcpower.Session)

 	voltage_limit_high (in module nidcpower.Session)

 	voltage_limit_low (in module nidcpower.Session)

 	voltage_limit_range (in module nidcpower.Session)

 	VOLTAGE_MEASURE_HIGH (nidcpower.OutputCutoffReason attribute)

 	VOLTAGE_MEASURE_LOW (nidcpower.OutputCutoffReason attribute)

 	VOLTAGE_OUTPUT_HIGH (nidcpower.OutputCutoffReason attribute)

 	VOLTAGE_OUTPUT_LOW (nidcpower.OutputCutoffReason attribute)

 	voltage_pole_zero_ratio (in module nidcpower.Session)

W

 	
 	wait_for_event() (in module nidcpower.Session)

 	
 	WRITE_TO_EEPROM (nidcpower.SelfCalibrationPersistence attribute)

Z

 	
 	ZERO_M (nidcpower.CableLength attribute)

 nav.xhtml

 Table of Contents

 		
 NI-DCPower Python API Documentation

 		
 nidcpower module

 		
 Installation

 		
 Usage

 		
 API Reference

 		
 Session

 		
 Methods

 		
 Properties

 		
 Repeated Capabilities

 		
 Enums

 		
 Exceptions and Warnings

 		
 Examples

 		
 gRPC Support

_static/file.png

_static/minus.png

_static/python-dmm-small.jpg

_static/plus.png

